Is it possible to get classification report from cross_val_score through some workaround? I'm using nested cross-validation and I can get various scores here for a model, however, I would like to see the classification report of the outer loop. Any recommendations?
# Choose cross-validation techniques for the inner and outer loops,
# independently of the dataset.
# E.g "LabelKFold", "LeaveOneOut", "LeaveOneLabelOut", etc.
inner_cv = KFold(n_splits=4, shuffle=True, random_state=i)
outer_cv = KFold(n_splits=4, shuffle=True, random_state=i)
# Non_nested parameter search and scoring
clf = GridSearchCV(estimator=svr, param_grid=p_grid, cv=inner_cv)
# Nested CV with parameter optimization
nested_score = cross_val_score(clf, X=X_iris, y=y_iris, cv=outer_cv)
I would like to see a classification report here along side the score values. http://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html