34
votes

In keras.applications, there is a VGG16 model pre-trained on imagenet.

from keras.applications import VGG16
model = VGG16(weights='imagenet')

This model has the following structure.


Layer (type)                     Output Shape          Param #     Connected to                     
====================================================================================================
input_1 (InputLayer)             (None, 3, 224, 224)   0                                            
____________________________________________________________________________________________________
block1_conv1 (Convolution2D)     (None, 64, 224, 224)  1792        input_1[0][0]                    
____________________________________________________________________________________________________
block1_conv2 (Convolution2D)     (None, 64, 224, 224)  36928       block1_conv1[0][0]               
____________________________________________________________________________________________________
block1_pool (MaxPooling2D)       (None, 64, 112, 112)  0           block1_conv2[0][0]               
____________________________________________________________________________________________________
block2_conv1 (Convolution2D)     (None, 128, 112, 112) 73856       block1_pool[0][0]                
____________________________________________________________________________________________________
block2_conv2 (Convolution2D)     (None, 128, 112, 112) 147584      block2_conv1[0][0]               
____________________________________________________________________________________________________
block2_pool (MaxPooling2D)       (None, 128, 56, 56)   0           block2_conv2[0][0]               
____________________________________________________________________________________________________
block3_conv1 (Convolution2D)     (None, 256, 56, 56)   295168      block2_pool[0][0]                
____________________________________________________________________________________________________
block3_conv2 (Convolution2D)     (None, 256, 56, 56)   590080      block3_conv1[0][0]               
____________________________________________________________________________________________________
block3_conv3 (Convolution2D)     (None, 256, 56, 56)   590080      block3_conv2[0][0]               
____________________________________________________________________________________________________
block3_pool (MaxPooling2D)       (None, 256, 28, 28)   0           block3_conv3[0][0]               
____________________________________________________________________________________________________
block4_conv1 (Convolution2D)     (None, 512, 28, 28)   1180160     block3_pool[0][0]                
____________________________________________________________________________________________________
block4_conv2 (Convolution2D)     (None, 512, 28, 28)   2359808     block4_conv1[0][0]               
____________________________________________________________________________________________________
block4_conv3 (Convolution2D)     (None, 512, 28, 28)   2359808     block4_conv2[0][0]               
____________________________________________________________________________________________________
block4_pool (MaxPooling2D)       (None, 512, 14, 14)   0           block4_conv3[0][0]               
____________________________________________________________________________________________________
block5_conv1 (Convolution2D)     (None, 512, 14, 14)   2359808     block4_pool[0][0]                
____________________________________________________________________________________________________
block5_conv2 (Convolution2D)     (None, 512, 14, 14)   2359808     block5_conv1[0][0]               
____________________________________________________________________________________________________
block5_conv3 (Convolution2D)     (None, 512, 14, 14)   2359808     block5_conv2[0][0]               
____________________________________________________________________________________________________
block5_pool (MaxPooling2D)       (None, 512, 7, 7)     0           block5_conv3[0][0]               
____________________________________________________________________________________________________
flatten (Flatten)                (None, 25088)         0           block5_pool[0][0]                
____________________________________________________________________________________________________
fc1 (Dense)                      (None, 4096)          102764544   flatten[0][0]                    
____________________________________________________________________________________________________
fc2 (Dense)                      (None, 4096)          16781312    fc1[0][0]                        
____________________________________________________________________________________________________
predictions (Dense)              (None, 1000)          4097000     fc2[0][0]                        
====================================================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
____________________________________________________________________________________________________

I would like to fine-tune this model with dropout layers between the dense layers (fc1, fc2 and predictions), while keeping all the pre-trained weights of the model intact. I know it's possible to access each layer individually with model.layers, but I haven't found anywhere how to add new layers between the existing layers.

What's the best practice of doing this?

2

2 Answers

48
votes

I found an answer myself by using Keras functional API

from keras.applications import VGG16
from keras.layers import Dropout
from keras.models import Model

model = VGG16(weights='imagenet')

# Store the fully connected layers
fc1 = model.layers[-3]
fc2 = model.layers[-2]
predictions = model.layers[-1]

# Create the dropout layers
dropout1 = Dropout(0.85)
dropout2 = Dropout(0.85)

# Reconnect the layers
x = dropout1(fc1.output)
x = fc2(x)
x = dropout2(x)
predictors = predictions(x)

# Create a new model
model2 = Model(input=model.input, output=predictors)

model2 has the dropout layers as I wanted

____________________________________________________________________________________________________
Layer (type)                     Output Shape          Param #     Connected to                     
====================================================================================================
input_1 (InputLayer)             (None, 3, 224, 224)   0                                            
____________________________________________________________________________________________________
block1_conv1 (Convolution2D)     (None, 64, 224, 224)  1792        input_1[0][0]                    
____________________________________________________________________________________________________
block1_conv2 (Convolution2D)     (None, 64, 224, 224)  36928       block1_conv1[0][0]               
____________________________________________________________________________________________________
block1_pool (MaxPooling2D)       (None, 64, 112, 112)  0           block1_conv2[0][0]               
____________________________________________________________________________________________________
block2_conv1 (Convolution2D)     (None, 128, 112, 112) 73856       block1_pool[0][0]                
____________________________________________________________________________________________________
block2_conv2 (Convolution2D)     (None, 128, 112, 112) 147584      block2_conv1[0][0]               
____________________________________________________________________________________________________
block2_pool (MaxPooling2D)       (None, 128, 56, 56)   0           block2_conv2[0][0]               
____________________________________________________________________________________________________
block3_conv1 (Convolution2D)     (None, 256, 56, 56)   295168      block2_pool[0][0]                
____________________________________________________________________________________________________
block3_conv2 (Convolution2D)     (None, 256, 56, 56)   590080      block3_conv1[0][0]               
____________________________________________________________________________________________________
block3_conv3 (Convolution2D)     (None, 256, 56, 56)   590080      block3_conv2[0][0]               
____________________________________________________________________________________________________
block3_pool (MaxPooling2D)       (None, 256, 28, 28)   0           block3_conv3[0][0]               
____________________________________________________________________________________________________
block4_conv1 (Convolution2D)     (None, 512, 28, 28)   1180160     block3_pool[0][0]                
____________________________________________________________________________________________________
block4_conv2 (Convolution2D)     (None, 512, 28, 28)   2359808     block4_conv1[0][0]               
____________________________________________________________________________________________________
block4_conv3 (Convolution2D)     (None, 512, 28, 28)   2359808     block4_conv2[0][0]               
____________________________________________________________________________________________________
block4_pool (MaxPooling2D)       (None, 512, 14, 14)   0           block4_conv3[0][0]               
____________________________________________________________________________________________________
block5_conv1 (Convolution2D)     (None, 512, 14, 14)   2359808     block4_pool[0][0]                
____________________________________________________________________________________________________
block5_conv2 (Convolution2D)     (None, 512, 14, 14)   2359808     block5_conv1[0][0]               
____________________________________________________________________________________________________
block5_conv3 (Convolution2D)     (None, 512, 14, 14)   2359808     block5_conv2[0][0]               
____________________________________________________________________________________________________
block5_pool (MaxPooling2D)       (None, 512, 7, 7)     0           block5_conv3[0][0]               
____________________________________________________________________________________________________
flatten (Flatten)                (None, 25088)         0           block5_pool[0][0]                
____________________________________________________________________________________________________
fc1 (Dense)                      (None, 4096)          102764544   flatten[0][0]                    
____________________________________________________________________________________________________
dropout_1 (Dropout)              (None, 4096)          0           fc1[0][0]                        
____________________________________________________________________________________________________
fc2 (Dense)                      (None, 4096)          16781312    dropout_1[0][0]                  
____________________________________________________________________________________________________
dropout_2 (Dropout)              (None, 4096)          0           fc2[1][0]                        
____________________________________________________________________________________________________
predictions (Dense)              (None, 1000)          4097000     dropout_2[0][0]                  
====================================================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
____________________________________________________________________________________________________
4
votes

Here is a solution that stays within the Keras "Sequential API".

You can loop through the layers and sequentially add them to an updated Sequential model. Add Dropouts after the layers of your choice with an if-clause.

from tensorflow.keras.applications import VGG16
from tensorflow.keras.layers import Dropout
from tensorflow.keras.models import Sequential

model = VGG16(weights='imagenet')

# check structure and layer names before looping
model.summary()

# loop through layers, add Dropout after layers 'fc1' and 'fc2'
updated_model = Sequential()
for layer in model.layers:
    updated_model.add(layer)
    if layer.name in ['fc1', 'fc2']:
        updated_model.add(Dropout(.2))

model = updated_model

# check structure
model.summary()