I am trying to extract tables from old books using tesseract in R. Here is an example: Image
The quality of the image is quite poor and the recognition rate was quite bad at first. However, I managed to increase it with gimp: Rescaling, grey scale, auto threshold for colours, Gaussian blur and/or sharpen filters. I also gave a shot to Fred's imageMagick scripts - textcleaner - and used imageMagick to successfully remove the black lines. This is what I'm doing in R:
library(tesseract)
library(magick)
img <- image_read('img.png')
img_data <- ocr(img, engine = tesseract('eng', options = list(tessedit_char_whitelist = '0123456789.-',
tessedit_pageseg_mode = 'auto',
textord_tabfind_find_tables = '1',
textord_tablefind_recognize_tables = '1')))
cat(img_data)
Given that I only want to deal with digits, I set tessedit_char_whitelist and, while I get better results, they are still not reliable. What would you do in this case? Any other thoughts to improve accuracy before I try to train tesseract? I've never done it - let alone with digits only. Any idea/experience on how to do it? I've checked this out: https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesseract-4.00 but I'm still a bit baffled.