The Word2Vec object in gensim has a null_word parameter that isn't explained in the docs.
class gensim.models.word2vec.Word2Vec(sentences=None, size=100, alpha=0.025, window=5, min_count=5, max_vocab_size=None, sample=0.001, seed=1, workers=3, min_alpha=0.0001, sg=0, hs=0, negative=5, cbow_mean=1, hashfxn=, iter=5, null_word=0, trim_rule=None, sorted_vocab=1, batch_words=10000)
What is the null_word parameter used for?
Checking the code at https://github.com/RaRe-Technologies/gensim/blob/develop/gensim/models/word2vec.py#L680, it states:
if self.null_word:
# create null pseudo-word for padding when using concatenative L1 (run-of-words)
# this word is only ever input – never predicted – so count, huffman-point, etc doesn't matter
word, v = '\0', Vocab(count=1, sample_int=0)
v.index = len(self.wv.vocab)
self.wv.index2word.append(word)
self.wv.vocab[word] = v
What is "concatenative L1"?