0
votes

I am currently working on a streaming program which aggregates the data from a number of messages (8), the aggregation requires all 8 messages, so i am using a count window. All 8 messages share the same unique key. However there is no guarantee that all 8 messages will arrive. So my question is two-fold:

First what happens to a Flink count window that never closes? I am assuming the windows simply accumulate overtime, consuming more and more ram.

Secondly can I close a count window if it does not receive all of its messages within a given time? I am looking for a solution that is as real-time as possible, I already tried using a time window, however the time-of-flight of the messages varies between a few millisecond and 40 seconds.

So essentially is there a way to define a window that triggers at 8 messages, and evicts all messages from the window after a given time (in this case after 60 seconds)?

2

2 Answers

1
votes

The answer for your question regarding never closing windows is that the part of the state reserved for them will never be freed.

Your described behaviour could be implemented with custom trigger and evictor on Global Window. The trigger could either wait the expected time or number of elements before emitting window while the evictor would evict all messages if there are less than 8. For some referential implementation you can have a look at CountTrigger(emits on count) and EventTimeTrigger(emits on time). For the evictor have a look at CountEvictor.

1
votes

For cases like this where you need to combine stateful stream processing with timers, ProcessFunction can be a good choice. See https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/stream/process_function.html.