Main Problem
I cannot understand the Plot of the weights of a specific layer.
I used a method from no-learn : plot_conv_weights(layer, figsize=(6, 6))
Im using lasagne as my neural-network library.
The plot comes out fine, but I dont know how i should interpret it.
Neural Network Structure
The structure im using :
InputLayer 1x31x31
Conv2DLayer 20x3x3
Conv2DLayer 20x3x3
Conv2DLayer 20x3x3
MaxPool2DLayer 2x2
Conv2DLayer 40x3x3
Conv2DLayer 40x3x3
Conv2DLayer 40x3x3
MaxPool2DLayer 40x2x2
DropoutLayer
DenseLayer 96
DropoutLayer 96
DenseLayer 32
DropoutLayer 32
DenseLayer 1 as sigmoid
Here are the weights of the first 3 Layers :
** About the Images **
So for me, they look random and i cannot interpret them!
However, on Cs231, it says the following :
Conv/FC Filters. The second common strategy is to visualize the weights. These are usually most interpretable on the first CONV layer which is looking directly at the raw pixel data, but it is possible to also show the filter weights deeper in the network. The weights are useful to visualize because well-trained networks usually display nice and smooth filters without any noisy patterns. Noisy patterns can be an indicator of a network that hasn’t been trained for long enough, or possibly a very low regularization strength that may have led to overfitting http://cs231n.github.io/understanding-cnn/
Then why mine are random?
The structure is trained and performs well for its task.
References
http://cs231n.github.io/understanding-cnn/
https://github.com/dnouri/nolearn/blob/master/nolearn/lasagne/visualize.py