After @jschimpf comment, I've rethought the algorithm.
nvalue(1, [_]).
nvalue(C, [V|Vs]) :-
count_equals(V, Vs, E),
E #= 0 #/\ C #= R+1 #\/ E #> 0 #/\ C #= R,
nvalue(R, Vs).
count_equals(_, [], 0).
count_equals(V, [U|Vs], E) :-
V #= U #/\ E #= E1+1 #\/ V #\= U #/\ E #= E1,
count_equals(V, Vs, E1).
further cleanup
again, after @jschimpf note, I've tweaked the code: now it's very compact, thanks to libraries apply and yall.
nvalue(1, [_]).
nvalue(C, [V|Vs]) :-
maplist({V}/[U,Eq]>>(Eq#<==>V#=U), Vs, Es),
sum(Es, #=, E),
E #= 0 #/\ C #= R+1 #\/ E #> 0 #/\ C #= R,
nvalue(R, Vs).
old answer, buggy
my naive attempt, based on reification:
% nvalue(?N, +Variables)
nvalue(N, Vs) :-
nvalues(Vs, [], VRs),
sum(VRs, #=, N).
nvalues([], Acc, Acc).
nvalues([V|Vs], Acc, VRs) :-
nvalues_(V, Vs, Acc, Upd),
nvalues(Vs, Upd, VRs).
nvalues_(_V, [], Acc, Acc).
nvalues_(V, [U|Vs], Acc, Upd) :-
V #\= U #<==> D,
nvalues_(V, Vs, [D|Acc], Upd).
running your example query:
?- length(Vs, 3), Vs ins 1..3, nvalue(2, Vs), label(Vs).
Vs = [1, 1, 2] ;
Vs = [1, 1, 3] ;
Vs = [1, 2, 1] ;
Vs = [1, 2, 2] ;
Vs = [1, 3, 1] ;
Vs = [1, 3, 3] ;
Vs = [2, 1, 1] ;
Vs = [2, 1, 2] ;
Vs = [2, 2, 1] ;
Vs = [2, 2, 3] ;
Vs = [2, 3, 2] ;
Vs = [2, 3, 3] ;
Vs = [3, 1, 1] ;
Vs = [3, 1, 3] ;
Vs = [3, 2, 2] ;
Vs = [3, 2, 3] ;
Vs = [3, 3, 1] ;
Vs = [3, 3, 2].
edit
my code was a bit pedantic, of course could be more compact (and clear ?):
nvalue(N, Vs) :-
bagof(D, X^H^T^V^(append(X, [H|T], Vs), member(V, T), V #\= H #<==> D), VRs),
sum(VRs, #=, N).
note that findall/3 will not work, since the copy of reified variable D would lose the posted constraints.
fd_size/2
does? – Daniel Lyonsfd_size/2
returns the number of elements of a domain. For example,X in 0..10, fd_size(X, 11)
. I'm looking for something that constrains the number of distinct elements in a list of variables. – Hugo Sereno FerreiraX in 0..10, foo([X], 1)
? – Daniel Lyonslength(Vs, 3), Vs ins 1..3, nvalue(2, Vs)
to exclude as possible answers things likeVs = [3, 3, 3]
orVs = [1, 2, 3]
, because we are saying that there must be two distinct values. – Hugo Sereno Ferreira