I have an RDD that has the signature
org.apache.spark.rdd.RDD[java.io.ByteArrayOutputStream]
In this RDD, each row has its own partition.
This ByteArrayOutputStream is zip output. I am applying some processing on the data in each partition and i want to export the processed data from each partition as a single zip file. What is the best way to export each Row in the final RDD as one file per row on hdfs?
If you are interested in knowing how I ended up with such an Rdd.
val npyData = transformedTopData.select("tokenIDF", "topLevelId").rdd.repartition(2).mapPartitions(x => {
val vectors = for {
row <- x
} yield {
row.getAs[Vector](0)
}
Seq(ml2npyCSR(vectors.toSeq).zipOut)
}.iterator)
EDIT: Count works perfectly fine
scala> npyData.count()
res9: Long = 2
countit? I doubt the RDD is gonna work. - Jacek Laskowskiml2npyCSR.zipOutdoing? - Yuval Itzchakovjava.io.ByteArrayOutputStreamit may not. - Jacek Laskowski