I built a system like this for an app about 8 years ago, and I can share a couple ways it has evolved as the app usage has grown.
I started by logging every change (insert, update or delete) from any device into a "history" table. So if, for example, someone changes their phone number in the "contact" table, the system will edit the contact.phone field, and also add a history record with action=update, table=contact, field=phone, record=[contact ID], value=[new phone number]. Then whenever a device syncs, it downloads the history items since the last sync and applies them to its local database. This sounds like the "transaction replication" pattern described above.
One issue is keeping IDs unique when items could be created on different devices. I didn't know about UUIDs when I started this, so I used auto-incrementing IDs and wrote some convoluted code that runs on the central server to check new IDs uploaded from devices, change them to a unique ID if there's a conflict, and tell the source device to change the ID in its local database. Just changing the IDs of new records wasn't that bad, but if I create, for example, a new item in the contact table, then create a new related item in the event table, now I have foreign keys that I also need to check and update.
Eventually I learned that UUIDs could avoid this, but by then my database was getting pretty large and I was afraid a full UUID implementation would create a performance issue. So instead of using full UUIDs, I started using randomly generated, 8 character alphanumeric keys as IDs, and I left my existing code in place to handle conflicts. Somewhere between my current 8-character keys and the 36 characters of a UUID there must be a sweet spot that would eliminate conflicts without unnecessary bloat, but since I already have the conflict resolution code, it hasn't been a priority to experiment with that.
The next problem was that the history table was about 10 times larger than the entire rest of the database. This makes storage expensive, and any maintenance on the history table can be painful. Keeping that entire table allows users to roll back any previous change, but that started to feel like overkill. So I added a routine to the sync process where if the history item that a device last downloaded no longer exists in the history table, the server doesn't give it the recent history items, but instead gives it a file containing all the data for that account. Then I added a cronjob to delete history items older than 90 days. This means users can still roll back changes less than 90 days old, and if they sync at least once every 90 days, the updates will be incremental as before. But if they wait longer than 90 days, the app will replace the entire database.
That change reduced the size of the history table by almost 90%, so now maintaining the history table only makes the database twice as large instead of ten times as large. Another benefit of this system is that syncing could still work without the history table if needed -- like if I needed to do some maintenance that took it offline temporarily. Or I could offer different rollback time periods for accounts at different price points. And if there are more than 90 days of changes to download, the complete file is usually more efficient than the incremental format.
If I were starting over today, I'd skip the ID conflict checking and just aim for a key length that's sufficient to eliminate conflicts, with some kind of error checking just in case. (It looks like YouTube uses 11-character random IDs.) The history table and the combination of incremental downloads for recent updates or a full download when needed has been working well.