I have a train data set named df3.It is a data table.
I convert it to sparse matrix as follows :
sparse_matrix9 = sparse.model.matrix(ind_cco_fin_ult1~canal_entrada +
nomprov +
sexo +
ind_empleado +
indext + age + fark + ind_actividad_cliente
,data = df3)
And I modelled it with xgboost :
bst10_X <- xgboost(data = sparse_matrix9, label = output, max_depth = 15,
eta = 0.03, nthread = 2, nrounds = 550,prediction=TRUE, eval_metric = "auc",objective = "binary:logistic")
#train-auc:0.881950+0.000475 test-auc:0.819496+0.001057
After that I want to predict test data set. First I chosed my variables and make them a data frame :
test4<-as.data.frame(
test3$canal_entrada,
test3$nomprov,
test3$sexo,
test3$ind_empleado,
test3$indext,
test3$age,
test3$fark,
test3$ind_actividad_cliente
)
And After that I want convert it to sparse matrix :
sparse_matrix_test = xgb.DMatrix(data.matrix(test4))
And predict test data set values :
res <- predict(bst10_X, newdata = sparse_matrix_test)
But it gives me only one unique value on prediction :
unique(res)
0.00113265
Why it gives me only one value? Where am I wrong ? How can I predict test data set using trained model ?
Thank you..