I'm using R mlr package because it allows me to use multiple classification methods and tune parameters, with the same methods in this package.
But it changed my Positive Class.
In my dataset, I need to predict "HasWriteOff", it has value "1" or "2". "1" is the majority class, much more than the number of "2", which means the class is imbalanced.
I set the Positive class as "2" in makeClassifTask
function, but after prediction, when I was checking confusion matrix, it shows Positive Class as "1".
Here is my code:
I set the positive class here
train_task <- makeClassifTask(data=data.frame(train_data), target = "HasWriteOff", positive = "2")
test_task <- makeClassifTask(data=data.frame(test_data), target = "HasWriteOff", positive = "2")
train and predict with XGBoost
set.seed(410)
getParamSet("classif.xgboost")
xg_learner <- makeLearner("classif.xgboost", predict.type = "response")
xg_learner$par.vals <- list(
objective = "binary:logistic",
eval_metric = "error",
nrounds = 250
)
xg_param <- makeParamSet(
makeIntegerParam("nrounds",lower=200,upper=600),
makeIntegerParam("max_depth",lower=3,upper=20),
makeNumericParam("lambda",lower=0.55,upper=0.60),
makeNumericParam("eta", lower = 0.001, upper = 0.5),
makeNumericParam("subsample", lower = 0.10, upper = 0.80),
makeNumericParam("min_child_weight",lower=1,upper=5),
makeNumericParam("colsample_bytree",lower = 0.2,upper = 0.8)
)
rancontrol <- makeTuneControlRandom(maxit = 100L)
cv_xg <- makeResampleDesc("CV",iters = 3L)
xg_tune <- tuneParams(learner = xg_learner, task = train_task, resampling = cv_xg,measures = acc,par.set = xg_param, control = rancontrol)
xg_final <- setHyperPars(learner = xg_learner, par.vals = xg_tune$x)
xgmodel <- mlr::train(xg_final, train_task)
xgpredict <- predict(xgmodel, test_task)
Check Confusion Matrix here
nb_prediction <- xgpredict$data$response
dCM <- confusionMatrix(test_data$HasWriteOff, nb_prediction)
dCM
Output
Accuracy : 0.9954
95% CI : (0.9916, 0.9978) No Information Rate : 0.9784
P-Value [Acc > NIR] : 5.136e-11
Kappa : 0.8913
Mcnemar's Test P-Value : 1
Sensitivity : 0.9977
Specificity : 0.8936
Pos Pred Value : 0.9977
Neg Pred Value : 0.8936
Prevalence : 0.9784
Detection Rate : 0.9761
Detection Prevalence : 0.9784
Balanced Accuracy : 0.9456
'Positive' Class : 1
As you can see here 'Positive' Class is 1.
I have checked other methods I'm using here, they don't have 'positive' parameter to set.
Do you know how can I really set positive class as the minority class "2"? I'm trying to see whether by setting the minority class as Positive Class, the Specificity can be higher?