50
votes

I am trying to convert a column which is in String format to Date format using the to_date function but its returning Null values.

df.createOrReplaceTempView("incidents")
spark.sql("select Date from incidents").show()

+----------+
|      Date|
+----------+
|08/26/2016|
|08/26/2016|
|08/26/2016|
|06/14/2016|

spark.sql("select to_date(Date) from incidents").show()

+---------------------------+
|to_date(CAST(Date AS DATE))|
 +---------------------------+
|                       null|
|                       null|
|                       null|
|                       null|

The Date column is in String format:

 |-- Date: string (nullable = true)
11
Try this raw_data['Mycol'] = pd.to_datetime(raw_data['Mycol'], format='%d%b%Y:%H:%M:%S.%f')Piyush S. Wanare
Both of these comments point to answers using pandas data frames, not Spark data frames. While these data frame formats are interchangeable, conversion to pandas is costly on large data sets and negates many of the benefits that Spark provides (like being able to run a conversion on a distributed Spark cluster).QA Collective

11 Answers

49
votes

Use to_date with Java SimpleDateFormat.

TO_DATE(CAST(UNIX_TIMESTAMP(date, 'MM/dd/yyyy') AS TIMESTAMP))

Example:

spark.sql("""
  SELECT TO_DATE(CAST(UNIX_TIMESTAMP('08/26/2016', 'MM/dd/yyyy') AS TIMESTAMP)) AS newdate"""
).show()

+----------+
|        dt|
+----------+
|2016-08-26|
+----------+
36
votes

I solved the same problem without the temp table/view and with dataframe functions.

Of course I found that only one format works with this solution and that's yyyy-MM-DD.

For example:

val df = sc.parallelize(Seq("2016-08-26")).toDF("Id")
val df2 = df.withColumn("Timestamp", (col("Id").cast("timestamp")))
val df3 = df2.withColumn("Date", (col("Id").cast("date")))

df3.printSchema

root
 |-- Id: string (nullable = true)
 |-- Timestamp: timestamp (nullable = true)
 |-- Date: date (nullable = true)

df3.show

+----------+--------------------+----------+
|        Id|           Timestamp|      Date|
+----------+--------------------+----------+
|2016-08-26|2016-08-26 00:00:...|2016-08-26|
+----------+--------------------+----------+

The timestamp of course has 00:00:00.0 as a time value.

22
votes

Since your main aim was to convert the type of a column in a DataFrame from String to Timestamp, I think this approach would be better.

import org.apache.spark.sql.functions.{to_date, to_timestamp}
val modifiedDF = DF.withColumn("Date", to_date($"Date", "MM/dd/yyyy"))

You could also use to_timestamp (I think this is available from Spark 2.x) if you require fine grained timestamp.

8
votes

you can also do this query...!

sqlContext.sql("""
select from_unixtime(unix_timestamp('08/26/2016', 'MM/dd/yyyy'), 'yyyy:MM:dd') as new_format
""").show()

enter image description here

4
votes

You can also pass date format

df.withColumn("Date",to_date(unix_timestamp(df.col("your_date_column"), "your_date_format").cast("timestamp")))

For Example

import org.apache.spark.sql.functions._
val df = sc.parallelize(Seq("06 Jul 2018")).toDF("dateCol")
df.withColumn("Date",to_date(unix_timestamp(df.col("dateCol"), "dd MMM yyyy").cast("timestamp")))
3
votes

I have personally found some errors in when using unix_timestamp based date converstions from dd-MMM-yyyy format to yyyy-mm-dd, using spark 1.6, but this may extend into recent versions. Below I explain a way to solve the problem using java.time that should work in all versions of spark:

I've seen errors when doing:

from_unixtime(unix_timestamp(StockMarketClosingDate, 'dd-MMM-yyyy'), 'yyyy-MM-dd') as FormattedDate

Below is code to illustrate the error, and my solution to fix it. First I read in stock market data, in a common standard file format:

    import sys.process._
    import org.apache.spark.sql.SQLContext
    import org.apache.spark.sql.functions.udf
    import org.apache.spark.sql.types.{StructType, StructField, StringType, IntegerType, DateType}
    import sqlContext.implicits._

    val EODSchema = StructType(Array(
        StructField("Symbol"                , StringType, true),     //$1       
        StructField("Date"                  , StringType, true),     //$2       
        StructField("Open"                  , StringType, true),     //$3       
        StructField("High"                  , StringType, true),     //$4
        StructField("Low"                   , StringType, true),     //$5
        StructField("Close"                 , StringType, true),     //$6
        StructField("Volume"                , StringType, true)      //$7
        ))

    val textFileName = "/user/feeds/eoddata/INDEX/INDEX_19*.csv"

    // below is code to read using later versions of spark
    //val eoddata = spark.read.format("csv").option("sep", ",").schema(EODSchema).option("header", "true").load(textFileName)


    // here is code to read using 1.6, via, "com.databricks:spark-csv_2.10:1.2.0"

    val eoddata = sqlContext.read
                               .format("com.databricks.spark.csv")
                               .option("header", "true")                               // Use first line of all files as header
                               .option("delimiter", ",")                               //.option("dateFormat", "dd-MMM-yyyy") failed to work
                               .schema(EODSchema)
                               .load(textFileName)

    eoddata.registerTempTable("eoddata")

And here is the date conversions having issues:

%sql 
-- notice there are errors around the turn of the year
Select 
    e.Date as StringDate
,   cast(from_unixtime(unix_timestamp(e.Date, "dd-MMM-yyyy"), 'YYYY-MM-dd') as Date)  as ProperDate
,   e.Close
from eoddata e
where e.Symbol = 'SPX.IDX'
order by cast(from_unixtime(unix_timestamp(e.Date, "dd-MMM-yyyy"), 'YYYY-MM-dd') as Date)
limit 1000

A chart made in zeppelin shows spikes, which are errors.

Errors in date conversion seen as spikes

and here is the check that shows the date conversion errors:

// shows the unix_timestamp conversion approach can create errors
val result =  sqlContext.sql("""
Select errors.* from
(
    Select 
    t.*
    , substring(t.OriginalStringDate, 8, 11) as String_Year_yyyy 
    , substring(t.ConvertedCloseDate, 0, 4)  as Converted_Date_Year_yyyy
    from
    (        Select
                Symbol
            ,   cast(from_unixtime(unix_timestamp(e.Date, "dd-MMM-yyyy"), 'YYYY-MM-dd') as Date)  as ConvertedCloseDate
            ,   e.Date as OriginalStringDate
            ,   Close
            from eoddata e
            where e.Symbol = 'SPX.IDX'
    ) t 
) errors
where String_Year_yyyy <> Converted_Date_Year_yyyy
""")


//df.withColumn("tx_date", to_date(unix_timestamp($"date", "M/dd/yyyy").cast("timestamp")))


result.registerTempTable("SPX")
result.cache()
result.show(100)
result: org.apache.spark.sql.DataFrame = [Symbol: string, ConvertedCloseDate: date, OriginalStringDate: string, Close: string, String_Year_yyyy: string, Converted_Date_Year_yyyy: string]
res53: result.type = [Symbol: string, ConvertedCloseDate: date, OriginalStringDate: string, Close: string, String_Year_yyyy: string, Converted_Date_Year_yyyy: string]
+-------+------------------+------------------+-------+----------------+------------------------+
| Symbol|ConvertedCloseDate|OriginalStringDate|  Close|String_Year_yyyy|Converted_Date_Year_yyyy|
+-------+------------------+------------------+-------+----------------+------------------------+
|SPX.IDX|        1997-12-30|       30-Dec-1996| 753.85|            1996|                    1997|
|SPX.IDX|        1997-12-31|       31-Dec-1996| 740.74|            1996|                    1997|
|SPX.IDX|        1998-12-29|       29-Dec-1997| 953.36|            1997|                    1998|
|SPX.IDX|        1998-12-30|       30-Dec-1997| 970.84|            1997|                    1998|
|SPX.IDX|        1998-12-31|       31-Dec-1997| 970.43|            1997|                    1998|
|SPX.IDX|        1998-01-01|       01-Jan-1999|1229.23|            1999|                    1998|
+-------+------------------+------------------+-------+----------------+------------------------+
FINISHED   

After this result, I switched to java.time conversions with a UDF like this, which worked for me:

// now we will create a UDF that uses the very nice java.time library to properly convert the silly stockmarket dates
// start by importing the specific java.time libraries that superceded the joda.time ones
import java.time.LocalDate
import java.time.format.DateTimeFormatter

// now define a specific data conversion function we want

def fromEODDate (YourStringDate: String): String = {

    val formatter = DateTimeFormatter.ofPattern("dd-MMM-yyyy")
    var   retDate = LocalDate.parse(YourStringDate, formatter)

    // this should return a proper yyyy-MM-dd date from the silly dd-MMM-yyyy formats
    // now we format this true local date with a formatter to the desired yyyy-MM-dd format

    val retStringDate = retDate.format(DateTimeFormatter.ISO_LOCAL_DATE)
    return(retStringDate)
}

Now I register it as a function for use in sql:

sqlContext.udf.register("fromEODDate", fromEODDate(_:String))

and check the results, and rerun test:

val results = sqlContext.sql("""
    Select
        e.Symbol    as Symbol
    ,   e.Date      as OrigStringDate
    ,   Cast(fromEODDate(e.Date) as Date) as ConvertedDate
    ,   e.Open
    ,   e.High
    ,   e.Low
    ,   e.Close
    from eoddata e
    order by Cast(fromEODDate(e.Date) as Date)
""")

results.printSchema()
results.cache()
results.registerTempTable("results")
results.show(10)
results: org.apache.spark.sql.DataFrame = [Symbol: string, OrigStringDate: string, ConvertedDate: date, Open: string, High: string, Low: string, Close: string]
root
 |-- Symbol: string (nullable = true)
 |-- OrigStringDate: string (nullable = true)
 |-- ConvertedDate: date (nullable = true)
 |-- Open: string (nullable = true)
 |-- High: string (nullable = true)
 |-- Low: string (nullable = true)
 |-- Close: string (nullable = true)
res79: results.type = [Symbol: string, OrigStringDate: string, ConvertedDate: date, Open: string, High: string, Low: string, Close: string]
+--------+--------------+-------------+-------+-------+-------+-------+
|  Symbol|OrigStringDate|ConvertedDate|   Open|   High|    Low|  Close|
+--------+--------------+-------------+-------+-------+-------+-------+
|ADVA.IDX|   01-Jan-1996|   1996-01-01|    364|    364|    364|    364|
|ADVN.IDX|   01-Jan-1996|   1996-01-01|   1527|   1527|   1527|   1527|
|ADVQ.IDX|   01-Jan-1996|   1996-01-01|   1283|   1283|   1283|   1283|
|BANK.IDX|   01-Jan-1996|   1996-01-01|1009.41|1009.41|1009.41|1009.41|
| BKX.IDX|   01-Jan-1996|   1996-01-01|  39.39|  39.39|  39.39|  39.39|
|COMP.IDX|   01-Jan-1996|   1996-01-01|1052.13|1052.13|1052.13|1052.13|
| CPR.IDX|   01-Jan-1996|   1996-01-01|  1.261|  1.261|  1.261|  1.261|
|DECA.IDX|   01-Jan-1996|   1996-01-01|    205|    205|    205|    205|
|DECN.IDX|   01-Jan-1996|   1996-01-01|    825|    825|    825|    825|
|DECQ.IDX|   01-Jan-1996|   1996-01-01|    754|    754|    754|    754|
+--------+--------------+-------------+-------+-------+-------+-------+
only showing top 10 rows

which looks ok, and I rerun my chart, to see if there are errors/spikes:

enter image description here

As you can see, no more spikes or errors. I now use a UDF as I've shown to apply my date format transformations to a standard yyyy-MM-dd format, and have not had spurious errors since. :-)

1
votes

dateID is int column contains date in Int format

spark.sql("SELECT from_unixtime(unix_timestamp(cast(dateid as varchar(10)), 'yyyymmdd'), 'yyyy-mm-dd') from XYZ").show(50, false)
1
votes

Find the below-mentioned code, it might be helpful for you.

   val stringDate = spark.sparkContext.parallelize(Seq("12/16/2019")).toDF("StringDate")
                    val dateCoversion = stringDate.withColumn("dateColumn", to_date(unix_timestamp($"StringDate", "dd/mm/yyyy").cast("Timestamp")))
                    dateCoversion.show(false)
+----------+----------+
|StringDate|dateColumn|
+----------+----------+
|12/16/2019|2019-01-12|
+----------+----------+
0
votes

Use below function in PySpark to convert datatype into your required datatype. Here I'm converting all the date datatype into the Timestamp column.

def change_dtype(df):
    for name, dtype in df.dtypes:
        if dtype == "date":
            df = df.withColumn(name, col(name).cast('timestamp'))
    return df
0
votes

You could simply do df.withColumn("date", date_format(col("string"),"yyyy-MM-dd HH:mm:ss.ssssss")).show()

-1
votes

The solution proposed above by Sai Kiriti Badam worked for me.

I'm using Azure Databricks to read data captured from an EventHub. This contains a string column named EnqueuedTimeUtc with the following format...

12/7/2018 12:54:13 PM

I'm using a Python notebook and used the following...

import pyspark.sql.functions as func

sports_messages = sports_df.withColumn("EnqueuedTimestamp", func.to_timestamp("EnqueuedTimeUtc", "MM/dd/yyyy hh:mm:ss aaa"))

... to create a new column EnqueuedTimestamp of type "timestamp" with data in the following format...

2018-12-07 12:54:13