I am working on solving the linear algebraic equation Ax = b by using Eigen solvers through mex function of Matlab. Given a complex sparse matrix A and a sparse vector b from Matlab workspace, I want to map matrix A and vector b in Eigen sparse matrix format. After that, I need to use Eigen's linear equation solvers to solve it. At the end I need to transfer the results x to Matlab workspace.
However, since I am not good at C++ and not familiar with Eigen either. I am stuck at the first step, namely constructing the complex sparse matrix in Eigen accepted format.
I have found there is the following function in Eigen,
Eigen::MappedSparseMatrix<double,RowMajor> mat(rows, cols, nnz, row_ptr, col_index, values);
And I can use mxGetPr, mxGetPi, mxGetIr, mxGetJc, etc, these mex functions to get the info for the above "rows, cols, nnz, row_ptr, col_index, values". However, since in my case, matrix A is a complex sparse matrix, I am not sure whether "MappedSparseMatrix" can do that.
If it can, how the format of "MappedSparseMatrix" should be ? Is the following correct ?
Eigen::MappedSparseMatrix<std::complex<double>> mat(rows, cols, nnz, row_ptr, col_index, values_complex);
If so, how should I construct that values_complex ? I have found about a relevant topic before. I can use the following codes to get a complex dense matrix.
MatrixXcd mat(m,n);
mat.real() = Map<MatrixXd>(realData,m,n);
mat.imag() = Map<MatrixXd>(imagData,m,n);
However, since my matrix A is a sparse matrix, it seems that it will produce errors if I define mat as a complex sparse matrix like the following:
SparseMatrix<std::complex<double> > mat;
mat.real() = Map<SparseMatrix>(rows, cols, nnz, row_ptr, col_index, realData);
mat.imag() = Map<SparseMatrix>(rows, cols, nnz, row_ptr, col_index, imagData);
So can anyone provide some advice for that?