A git issue from June 2016 (https://github.com/tensorflow/tensorflow/issues/1727) indicates that there is the following problem:
currently the Allocator in the GPUDevice belongs to the ProcessState,
which is essentially a global singleton. The first session using GPU
initializes it, and frees itself when the process shuts down.
Thus the only workaround would be to use processes and shut them down after the computation.
Example Code:
import tensorflow as tf
import multiprocessing
import numpy as np
def run_tensorflow():
n_input = 10000
n_classes = 1000
# Create model
def multilayer_perceptron(x, weight):
# Hidden layer with RELU activation
layer_1 = tf.matmul(x, weight)
return layer_1
# Store layers weight & bias
weights = tf.Variable(tf.random_normal([n_input, n_classes]))
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None, n_classes])
pred = multilayer_perceptron(x, weights)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for i in range(100):
batch_x = np.random.rand(10, 10000)
batch_y = np.random.rand(10, 1000)
sess.run([optimizer, cost], feed_dict={x: batch_x, y: batch_y})
print "finished doing stuff with tensorflow!"
if __name__ == "__main__":
# option 1: execute code with extra process
p = multiprocessing.Process(target=run_tensorflow)
p.start()
p.join()
# wait until user presses enter key
raw_input()
# option 2: just execute the function
run_tensorflow()
# wait until user presses enter key
raw_input()
So if you would call the function run_tensorflow()
within a process you created and shut the process down (option 1), the memory is freed. If you just run run_tensorflow()
(option 2) the memory is not freed after the function call.
with
) also work? – etarionwith ... sess:
and have also triedsess.close()
. GPU memory doesn't get cleared, and clearing the default graph and rebuilding it certainly doesn't appear to work. That is, even if I put 10 sec pause in between models I don't see memory on the GPU clear withnvidia-smi
. That doesn't necessarily mean that tensorflow isn't handling things properly behind the scenes and just keeping its allocation of memory constant. But I'm having troubles validating that line of reasoning. – David Parksnvidia-smi
doesn't correctly report amount of memory available to TensorFlow. When TensorFlow computation releases memory, it will still show up as reserved to outside tools, but this memory is available to other computations in tensorflow – Yaroslav Bulatov