I wrote some code to try and solve this question: https://stackguides.com/questions/39477748/how-to-annotate-bars-with-values-on-pandas-on-seaborn-factorplot-bar-plot
I used part of the code that can be found here: matplotlib advanced bar plot
Why is the graph so small? The code just tells to grab the accuracies from Pandas dataframe .
The code:
sns.set(style="white")
g = sns.factorplot(x="Stages", y="Accuracy", hue="Dataset", data=df, saturation = 5, size=4, aspect=2, kind="bar",
palette= myPalette, legend=False)
ax=g.ax
def annotateBars(row, ax=ax):
if row['Accuracy'] < 20:
color = 'white'
vertalign = 'bottom'
vertpad = 2
else:
color = 'black'
vertalign = 'top'
vertpad = -2
ax.text(row.name, row['Accuracy'] + vertpad, "{:.1f}%".format(row['Accuracy']),
zorder=10, rotation=90, color=color,
horizontalalignment='center',
verticalalignment=vertalign,
fontsize=12, weight='heavy')
junk = df.apply(annotateBars, ax=ax, axis=1)
This is code to annotate each bar, but ...with Pandas and Matplotlib. The only problem is that I do not know how to change colors and group the "x axis" :(
df = df.set_index('Stages')
ax = df.plot.bar(title="Accuracy")
ax.set_ylim(0, 120)
for p in ax.patches:
ax.annotate("%.2f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()),
ha='center', va='center', rotation=90, xytext=(0, 20), textcoords='offset points') #vertical bars
ax.annotate
with good x-values – Paul Hg.ax.get_xlim()
(the range of X values you should be using) and compare todf.index
(the actual X values you are using) – Paul Hget_xlim
to yourax
variable. Don't do that. I stea write a function that annotates the bars as they are drawn and map that across a FacetGrid – Paul H