I have a dataset that contains several columns, including 1 with list entries:
DT = data.table(
x = c(1:5),
y = seq(2, 10, 2),
z = list(list("a","b","a"), list("a","c"), list("b","c"), list("a","b","c"), list("b","c","b"))
)
Basically, I'm trying to unlist a, b, c from column z, and aggregate the data based on the x & y values.
Desired output:
z x sum(y)
1: a 1 4
2: b 1 2
3: a 2 4
4: c 2 4
5: b 3 6
6: c 3 6
7: a 4 8
8: b 4 8
9: c 4 8
10: b 5 20
11: c 5 10
My current method is rather round-about; I created 2 other columns with x and y values in lists of the same length as the list entry in z column, then unlisted all 3 columns simultaneously before aggregating - i.e. sum y values, grouped by z & x.
Code (before unlisting & aggregation):
DT[, listlen := sapply(z, function(x) length(x))]
for (a in c(1:nrow(DT))){
DT[a, x1:= list(list(rep(DT[a, x], DT[a, listlen])))]
DT[a, y1:= list(list(rep(DT[a, y], DT[a, listlen])))]}
DT_out = data.table(x = unlist(DT[,x1]), y = unlist(DT[,y1]), z = unlist(DT[,z]))
x y z listlen x1 y1
1: 1 2 <list> 3 1,1,1 2,2,2
2: 2 4 <list> 2 2,2 4,4
3: 3 6 <list> 2 3,3 6,6
4: 4 8 <list> 3 4,4,4 8,8,8
5: 5 10 <list> 3 5,5,5 10,10,10
Is there a method through data.table or reshape packages that can help me melt the dataset / do this much simpler? As I'm working with a lot more rows than this and this step seems to be very inefficient.
Any other help regarding the aggregation step would be much appreciated too!