TL; DR: No. Modern lisp systems have many more primitives than the first lisp and a new primitives are needed for each new primitive data type.
The first Lisp didn't have numbers but it was turing complete. That means it can do any computation that is possible in any other language, but it doesn't mean it would be practical to do so. Number were not hard to mimic, but calculations were slow. There are rumers today about slow arithmetic dating back pre Lisp 1.5.
When I made my first lisp interpreter I couldn't care much for numbers. It's not really an interesting aspect of an interpreter. I did however implement fibonacci
as an example and this is how it looks like:
;; This is NOT Common Lisp code. It's Zozotez
(setq + (lambda (x y)
(if x (cons (car x)
(+ (cdr x) y))
y)))
(setq - (lambda (z w)
(if w (- (cdr z)
(cdr w))
z)))
(setq fibonacci
(lambda (n a1 a2)
(if n
(fibonacci (- n '(1))
a2
(+ a2 a1))
a1)))
(fibonacci '(1 1 1 1 1 1 1 1 1) () '(1))
; ==> (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)
No numbers! (1
in my language is a symbol so it needs to be quoted or else it will be evaluated like a variable)
As alternative number system I have implemented a positional system, pretty much like how we write numbers with the same rules for adding/multiplying etc. Perhaps a tad faster than lits of length n but more complex to make.
If the Lisp has closures you can do church numerals. Using the same as lambda calculus you can compute anything with just closures. You only need one primitive, lambda
. (Again, not the easiest to work with)
(())
. And this is 2:(() ())
. – Will Ness