How do I get the numbers after a decimal point?
For example, if I have 5.55
, how do i get .55
?
How do I get the numbers after a decimal point?
For example, if I have 5.55
, how do i get .55
?
similar to the accepted answer, even easier approach using strings would be
def number_after_decimal(number1):
number = str(number1)
if 'e-' in number: # scientific notation
number_dec = format(float(number), '.%df'%(len(number.split(".")[1].split("e-")[0])+int(number.split('e-')[1])))
elif "." in number: # quick check if it is decimal
number_dec = number.split(".")[1]
return number_dec
Sometimes trailing zeros matter
In [4]: def split_float(x):
...: '''split float into parts before and after the decimal'''
...: before, after = str(x).split('.')
...: return int(before), (int(after)*10 if len(after)==1 else int(after))
...:
...:
In [5]: split_float(105.10)
Out[5]: (105, 10)
In [6]: split_float(105.01)
Out[6]: (105, 1)
In [7]: split_float(105.12)
Out[7]: (105, 12)
Float numbers are not stored in decimal (base10) format. Have a read through the python documentation on this to satisfy yourself why. Therefore, to get a base10 representation from a float is not advisable.
Now there are tools which allow storage of numeric data in decimal format. Below is an example using the Decimal
library.
from decimal import *
x = Decimal('0.341343214124443151466')
str(x)[-2:] == '66' # True
y = 0.341343214124443151466
str(y)[-2:] == '66' # False
I've found that really large numbers with really large fractional parts can cause problems when using modulo 1 to get the fraction.
import decimal
>>> d = decimal.Context(decimal.MAX_PREC).create_decimal(
... '143000000000000000000000000000000000000000000000000000000000000000000000000000.1231200000000000000002013210000000'
... )
...
>>> d % 1
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
decimal.InvalidOperation: [<class 'decimal.DivisionImpossible'>]
I instead grabbed the integral part and subtracted it first to help simplify the rest of it.
>>> d - d.to_integral()
Decimal('0.1231200000000000000002013210')
def fractional_part(numerator, denominator):
# Operate with numerator and denominator to
# keep just the fractional part of the quotient
if denominator == 0:
return 0
else:
return (numerator/ denominator)-(numerator // denominator)
print(fractional_part(5, 5)) # Should be 0
print(fractional_part(5, 4)) # Should be 0.25
print(fractional_part(5, 3)) # Should be 0.66...
print(fractional_part(5, 2)) # Should be 0.5
print(fractional_part(5, 0)) # Should be 0
print(fractional_part(0, 5)) # Should be 0
Easier if the input is a string, we can use split()
decimal = input("Input decimal number: ") #123.456
# split 123.456 by dot = ['123', '456']
after_coma = decimal.split('.')[1]
# because only index 1 is taken then '456'
print(after_coma) # '456'
if you want to make a number type print(int(after_coma)) # 456
What about:
a = 1.234
b = a - int(a)
length = len(str(a))
round(b, length-2)
Output:print(b)
0.23399999999999999
round(b, length-2)
0.234
Since the round is sent to a the length of the string of decimals ('0.234'), we can just minus 2 to not count the '0.', and figure out the desired number of decimal points. This should work most times, unless you have lots of decimal places and the rounding error when calculating b interferes with the second parameter of round.
Another option would be to use the re
module with re.findall
or re.search
:
import re
def get_decimcal(n: float) -> float:
return float(re.search(r'\.\d+', str(n)).group(0))
def get_decimcal_2(n: float) -> float:
return float(re.findall(r'\.\d+', str(n))[0])
def get_int(n: float) -> int:
return int(n)
print(get_decimcal(5.55))
print(get_decimcal_2(5.55))
print(get_int(5.55))
0.55
0.55
5
If you wish to simplify/modify/explore the expression, it's been explained on the top right panel of regex101.com. If you'd like, you can also watch in this link, how it would match against some sample inputs.
How to get rid of additional floating numbers in python subtraction?
def fractional_part(numerator, denominator):
if denominator == 0:
return 0
else:
return numerator / denominator - numerator // denominator
print(fractional_part(5, 5)) # Should be 0
print(fractional_part(5, 4)) # Should be 0.25
print(fractional_part(5, 3)) # Should be 0.66...
print(fractional_part(5, 2)) # Should be 0.5
print(fractional_part(5, 0)) # Should be 0
print(fractional_part(0, 5)) # Should be 0