I want to ask pros and cons of different Prolog representations in arguments of predicates.
For example in Exercise 4.3: Write a predicate second(X,List) which checks whether X is the second element of List. The solution can be:
second(X,List):- [_,X|_]=List.
Or,
second(X,[_,X|_]).
The both predicates would behave similarly. The first one would be more readable than the second, at least to me. But the second one uses more stacks during the execution (I checked this with trace).
A more complicated example is Exercise 3.5: Binary trees are trees where all internal nodes have exactly two children. The smallest binary trees consist of only one leaf node. We will represent leaf nodes as leaf(Label) . For instance, leaf(3) and leaf(7) are leaf nodes, and therefore small binary trees. Given two binary trees B1 and B2 we can combine them into one binary tree using the functor tree/2 as follows: tree(B1,B2) . So, from the leaves leaf(1) and leaf(2) we can build the binary tree tree(leaf(1),leaf(2)) . And from the binary trees tree(leaf(1),leaf(2)) and leaf(4) we can build the binary tree tree(tree(leaf(1), leaf(2)),leaf(4)). Now, define a predicate swap/2 , which produces the mirror image of the binary tree that is its first argument. The solution would be:
A2.1:
swap(T1,T2):- T1=tree(leaf(L1),leaf(L2)), T2=tree(leaf(L2),leaf(L1)).
swap(T1,T2):- T1=tree(tree(B1,B2),leaf(L3)), T2=tree(leaf(L3),T3), swap(tree(B1,B2),T3).
swap(T1,T2):- T1=tree(leaf(L1),tree(B2,B3)), T2=tree(T3,leaf(L1)), swap(tree(B2,B3),T3).
swap(T1,T2):- T1=tree(tree(B1,B2),tree(B3,B4)), T2=tree(T4,T3), swap(tree(B1,B2),T3),swap(tree(B3,B4),T4).
Alternatively,
A2.2:
swap(tree(leaf(L1),leaf(L2)), tree(leaf(L2),leaf(L1))).
swap(tree(tree(B1,B2),leaf(L3)), tree(leaf(L3),T3)):- swap(tree(B1,B2),T3).
swap(tree(leaf(L1),tree(B2,B3)), tree(T3,leaf(L1))):- swap(tree(B2,B3),T3).
swap(tree(tree(B1,B2),tree(B3,B4)), tree(T4,T3)):- swap(tree(B1,B2),T3),swap(tree(B3,B4),T4).
The number of steps of the second solution was much less than the first one (again, I checked with trace). But regarding the readability, the first one would be easier to understand, I think.
Probably the readability depends on the level of one's Prolog skill. I am a learner level of Prolog, and am used to programming with C++, Python, etc. So I wonder if skillful Prolog programmers agree with the above readability.
Also, I wonder if the number of steps can be a good measurement of the computational efficiency.
Could you give me your opinions or guidelines to design predicate arguments?
EDITED.
According to the advice from @coder, I made a third version that consists of a single rule:
A2.3:
swap(T1,T2):-
( T1=tree(leaf(L1),leaf(L2)), T2=tree(leaf(L2),leaf(L1)) );
( T1=tree(tree(B1,B2),leaf(L3)), T2=tree(leaf(L3),T3), swap(tree(B1,B2),T3) );
( T1=tree(leaf(L1),tree(B2,B3)), T2=tree(T3,leaf(L1)), swap(tree(B2,B3),T3) );
( T1=tree(tree(B1,B2),tree(B3,B4)), T2=tree(T4,T3), swap(tree(B1,B2),T3),swap(tree(B3,B4),T4) ).
I compared the number of steps in trace of each solution:
- A2.1: 36 steps
- A2.2: 8 steps
- A2.3: 32 steps
A2.3 (readable single-rule version) seems to be better than A2.1 (readable four-rule version), but A2.2 (non-readable four-rule version) still outperforms.
I'm not sure if the number of steps in trace is reflecting the actual computation efficiency. There are less steps in A2.2 but it uses more computation cost in pattern matching of the arguments. So, I compared the execution time for 40000 queries (each query is a complicated one, swap(tree(tree(tree(tree(leaf(3),leaf(4)),leaf(5)),tree(tree(tree(tree(leaf(3),leaf(4)),leaf(5)),leaf(4)),leaf(5))),tree(tree(leaf(3),tree(tree(leaf(3),leaf(4)),leaf(5))),tree(tree(tree(tree(leaf(3),leaf(4)),leaf(5)),leaf(4)),leaf(5)))), _). ). The results were almost the same (0.954 sec, 0.944 sec, 0.960 sec respectively). This is showing that the three reresentations A2.1, A2.2, A2.3 have close computational efficiency. Do you agree with this result? (Probably this is a case specific; I need to vary the experimental setup).
second/2
, and it describes a relation between a list and its second element. But which argument is the list? The first or the second one? On the other hand, suppose I have a predicate calledlist_second_element/2
, orlist_second/2
, then it is completely clear which argument denotes the list. Similarly, what are the arguments ofswap/2
? Start withtree_tree/2
, and then find more specific names denoting what each argument means. – matwhile ((c = getchar()) != EOF)
are utter nonsense, but after seeing it often enough it becomes, well, an idiom. – user1812457