The following code:
library(randomForest)
z.auto <- randomForest(Mileage ~ Weight,
data=car.test.frame,
ntree=1,
nodesize = 15)
tree <- getTree(z.auto,k=1,labelVar = T)
tree
Gives this as text output:
left daughter right daughter split var split point status prediction
1 2 3 Weight 2567.5 -3 24.45000
2 0 0 <NA> 0.0 -1 30.66667
3 4 5 Weight 3087.5 -3 22.37778
4 6 7 Weight 2747.5 -3 24.00000
5 8 9 Weight 3637.5 -3 19.94444
6 0 0 <NA> 0.0 -1 25.20000
7 10 11 Weight 2770.0 -3 23.29412
8 0 0 <NA> 0.0 -1 21.18182
9 0 0 <NA> 0.0 -1 18.00000
10 0 0 <NA> 0.0 -1 22.50000
11 0 0 <NA> 0.0 -1 23.72727
From this data I can see the logic of an individual tree.
How do I get the much longer table, based on this, that describes all the trees in a random forest, from h2o?
I like 'h2o' because it cleanly uses all the cores, and goes at a pretty good clip on my system. It is a nice tool. It is, however, a library separate from 'r' so I am unsure how to access various parts of my data.
How do I get something like the above printed output, in the form of a csv file, from an h2o random forest?