Given the following Kotlin class:
data class Test(val value: Int)
How would I override the Int
getter so that it returns 0 if the value negative?
If this isn't possible, what are some techniques to achieve a suitable result?
Given the following Kotlin class:
data class Test(val value: Int)
How would I override the Int
getter so that it returns 0 if the value negative?
If this isn't possible, what are some techniques to achieve a suitable result?
After spending almost a full year of writing Kotlin daily I've found that attempting to override data classes like this is a bad practice. There are 3 valid approaches to this, and after I present them, I'll explain why the approach other answers have suggested is bad.
Have your business logic that creates the data class
alter the value to be 0 or greater before calling the constructor with the bad value. This is probably the best approach for most cases.
Don't use a data class
. Use a regular class
and have your IDE generate the equals
and hashCode
methods for you (or don't, if you don't need them). Yes, you'll have to re-generate it if any of the properties are changed on the object, but you are left with total control of the object.
class Test(value: Int) {
val value: Int = value
get() = if (field < 0) 0 else field
override fun equals(other: Any?): Boolean {
if (this === other) return true
if (other !is Test) return false
return true
}
override fun hashCode(): Int {
return javaClass.hashCode()
}
}
Create an additional safe property on the object that does what you want instead of having a private value that's effectively overriden.
data class Test(val value: Int) {
val safeValue: Int
get() = if (value < 0) 0 else value
}
A bad approach that other answers are suggesting:
data class Test(private val _value: Int) {
val value: Int
get() = if (_value < 0) 0 else _value
}
The problem with this approach is that data classes aren't really meant for altering data like this. They are really just for holding data. Overriding the getter for a data class like this would mean that Test(0)
and Test(-1)
wouldn't equal
one another and would have different hashCode
s, but when you called .value
, they would have the same result. This is inconsistent, and while it may work for you, other people on your team who see this is a data class, may accidentally misuse it without realizing how you've altered it / made it not work as expected (i.e. this approach wouldn't work correctly in a Map
or a Set
).
You could try something like this:
data class Test(private val _value: Int) {
val value = _value
get(): Int {
return if (field < 0) 0 else field
}
}
assert(1 == Test(1).value)
assert(0 == Test(0).value)
assert(0 == Test(-1).value)
assert(1 == Test(1)._value) // Fail because _value is private
assert(0 == Test(0)._value) // Fail because _value is private
assert(0 == Test(-1)._value) // Fail because _value is private
In a data class you must to mark the primary constructor's parameters with either val
or var
.
I'm assigning the value of _value
to value
in order to use the desired name for the property.
I defined a custom accessor for the property with the logic you described.
The answer depends on what capabilities you actually use that data
provides. @EPadron mentioned a nifty trick (improved version):
data class Test(private val _value: Int) {
val value: Int
get() = if (_value < 0) 0 else _value
}
That will works as expected, e.i it has one field, one getter, right equals
, hashcode
and component1
. The catch is that toString
and copy
are weird:
println(Test(1)) // prints: Test(_value=1)
Test(1).copy(_value = 5) // <- weird naming
To fix the problem with toString
you may redefine it by hands. I know of no way to fix the parameter naming but not to use data
at all.
I know this is an old question but it seems nobody mentioned the possibility to make value private and writing custom getter like this:
data class Test(private val value: Int) {
fun getValue(): Int = if (value < 0) 0 else value
}
This should be perfectly valid as Kotlin will not generate default getter for private field.
But otherwise I definitely agree with spierce7 that data classes are for holding data and you should avoid hardcoding "business" logic there.
I have seen your answer, I agree that data classes are meant for holding data only, but sometimes we need to make somethings out of them.
Here is what i'm doing with my data class, I changed some properties from val to var, and overid them in the constructor.
like so:
data class Recording(
val id: Int = 0,
val createdAt: Date = Date(),
val path: String,
val deleted: Boolean = false,
var fileName: String = "",
val duration: Int = 0,
var format: String = " "
) {
init {
if (fileName.isEmpty())
fileName = path.substring(path.lastIndexOf('\\'))
if (format.isEmpty())
format = path.substring(path.lastIndexOf('.'))
}
fun asEntity(): rc {
return rc(id, createdAt, path, deleted, fileName, duration, format)
}
}
This seems to be one (among other) annoying drawbacks of Kotlin.
It seems that the only reasonable solution, which completely keeps backward compatibility of the class is to convert it into a regular class (not a "data" class), and implement by hand (with the aid of the IDE) the methods: hashCode(), equals(), toString(), copy() and componentN()
class Data3(i: Int)
{
var i: Int = i
override fun equals(other: Any?): Boolean
{
if (this === other) return true
if (other?.javaClass != javaClass) return false
other as Data3
if (i != other.i) return false
return true
}
override fun hashCode(): Int
{
return i
}
override fun toString(): String
{
return "Data3(i=$i)"
}
fun component1():Int = i
fun copy(i: Int = this.i): Data3
{
return Data3(i)
}
}
I found the following to be the best approach to achieve what you need without breaking equals
and hashCode
:
data class TestData(private var _value: Int) {
init {
_value = if (_value < 0) 0 else _value
}
val value: Int
get() = _value
}
// Test value
assert(1 == TestData(1).value)
assert(0 == TestData(-1).value)
assert(0 == TestData(0).value)
// Test copy()
assert(0 == TestData(-1).copy().value)
assert(0 == TestData(1).copy(-1).value)
assert(1 == TestData(-1).copy(1).value)
// Test toString()
assert("TestData(_value=1)" == TestData(1).toString())
assert("TestData(_value=0)" == TestData(-1).toString())
assert("TestData(_value=0)" == TestData(0).toString())
assert(TestData(0).toString() == TestData(-1).toString())
// Test equals
assert(TestData(0) == TestData(-1))
assert(TestData(0) == TestData(-1).copy())
assert(TestData(0) == TestData(1).copy(-1))
assert(TestData(1) == TestData(-1).copy(1))
// Test hashCode()
assert(TestData(0).hashCode() == TestData(-1).hashCode())
assert(TestData(1).hashCode() != TestData(-1).hashCode())
However,
First, note that _value
is var
, not val
, but on the other hand, since it's private and data classes cannot be inherited from, it's fairly easy to make sure that it is not modified within the class.
Second, toString()
produces a slightly different result than it would if _value
was named value
, but it's consistent and TestData(0).toString() == TestData(-1).toString()
.