There are two distinct schedulers: the CPU (process/thread ...) scheduler, and the I/O scheduler(s).
CPU schedulers typically employ some hybrid algorithms, because they certainly do regularly encounter both pre-emption and processes which voluntarily give up part of their time-slice. They must service higher-priority work quickly, while not "starving" anyone. (A study of the current Linux scheduler is most interesting. There have been several.)
CPU schedulers identify processes as being either "primarily 'I/O-bound'" or "primarily 'CPU-bound'" at this particular time, knowing that their characteristics can and do change. If your process repeatedly consumes full time slices, it is seen as CPU-bound.
I/O schedulers seek to order and re-order the I/O request queues for maximum efficiency. For instance, to keep the read/write head of a physical disk-drive moving efficiently in a single direction. (The two components of disk-drive delay are "seek time" and "rotational latency," with "seek time" being by-far the worst of the two. Per contra, solid-state drives have very different timing.) I/O-schedulers also have to be aware of the channels (disk interface cards, cabling, etc.) that provide access to each device: they can't simply watch what any one drive is doing. As with the CPU-scheduler, requests must be efficiently handled but never "starved." Linux's I/O-schedulers are also readily available for your study.
"Pure round-robin," as a scheduling discipline, simply means that all requests have equal priority and will be serviced sequentially in the order that they were originally submitted. Very pretty birds though they are, you rarely encounter Pure Robins in real life.