I am trying to save my model as object created from spark ml library.
However, it is giving me an error:
Exception in thread "main" java.lang.NoSuchMethodError: org.apache.spark.ml.PipelineModel.save(Ljava/lang/String;)V at com.sf.prediction$.main(prediction.scala:61) at com.sf.prediction.main(prediction.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:672) at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180) at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:120) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Below are my dependencies:
<dependency>
<groupId>org.scalatest</groupId>
<artifactId>scalatest_2.10</artifactId>
<version>2.1.7</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>2.4.3</version>
<type>maven-plugin</type>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>1.6.0</version>
</dependency>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-parser-combinators</artifactId>
<version>2.11.0-M4</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.10</artifactId>
<version>1.6.0</version>
</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-csv</artifactId>
<version>1.2</version>
</dependency>
<dependency>
<groupId>com.databricks</groupId>
<artifactId>spark-csv_2.10</artifactId>
<version>1.4.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.10</artifactId>
<version>1.6.1</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.10</artifactId>
<version>1.6.0</version>
</dependency>
I also want to save the dataframe generated from the model as a csv.
model.transform(df).select("features","label","prediction").show()
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.functions._
import org.apache.spark.SparkConf
import org.apache.spark.sql.hive.HiveContext
import org.apache.spark.ml.feature.OneHotEncoder
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.PipelineModel._
import org.apache.spark.ml.feature.{IndexToString, StringIndexer, VectorIndexer}
import org.apache.spark.ml.util.MLWritable
object prediction {
def main(args: Array[String]): Unit = {
val conf = new SparkConf()
.setMaster("local[2]")
.setAppName("conversion")
val sc = new SparkContext(conf)
val hiveContext = new HiveContext(sc)
val df = hiveContext.sql("select * from prediction_test")
df.show()
val credit_indexer = new StringIndexer().setInputCol("transaction_credit_card").setOutputCol("creditCardIndex").fit(df)
val category_indexer = new StringIndexer().setInputCol("transaction_category").setOutputCol("categoryIndex").fit(df)
val location_flag_indexer = new StringIndexer().setInputCol("location_flag").setOutputCol("locationIndex").fit(df)
val label_indexer = new StringIndexer().setInputCol("fraud").setOutputCol("label").fit(df)
val assembler = new VectorAssembler().setInputCols(Array("transaction_amount", "creditCardIndex","categoryIndex","locationIndex")).setOutputCol("features")
val lr = new LogisticRegression().setMaxIter(10).setRegParam(0.01)
val pipeline = new Pipeline().setStages(Array(credit_indexer, category_indexer, location_flag_indexer, label_indexer, assembler, lr))
val model = pipeline.fit(df)
pipeline.save("/user/f42h/prediction/pipeline")
model.save("/user/f42h/prediction/model")
// val sameModel = PipelineModel.load("/user/bob/prediction/model")
model.transform(df).select("features","label","prediction")
}
}