Use case is to generate a sine wave for digital synthesis, so, we need to compute all values of sin(d t) where:
t is an integer number, representing the sample number. This is variable. Range is from 0 to 158,760,000 for one hour sound of CD quality.
d is double, representing the delta of the angle. This is constant. And the range is: greater than 0 , less than pi.
Goal is to achieve high accuracy with traditional int and double data types. Performance is not important.
Naive implementation is:
double next()
{
t++;
return sin( ((double) t) * (d) );
}
But, the problem is when t increases, accuracy gets reduced because big numbers provided to "sin" function.
An improved version is the following:
double next()
{
d_sum += d;
if (d_sum >= (M_PI*2)) d_sum -= (M_PI*2);
return sin(d_sum);
}
Here, I make sure to provide numbers in range from 0 to 2*pi to the "sin" function.
But, now, the problem is when d is small, there are many small additions which decreases the accuracy every time.
The question here is how to improve the accuracy.
Appendix 1
"accuracy gets reduced because big numbers provided to "sin" function":
#include <stdio.h>
#include <math.h>
#define TEST (300000006.7846112)
#define TEST_MOD (0.0463259891528704262050786960234519968548937998410258872449766)
#define SIN_TEST (0.0463094209176730795999323058165987662490610492247070175523420)
int main()
{
double a = sin(TEST);
double b = sin(TEST_MOD);
printf("a=%0.20f \n" , a);
printf("diff=%0.20f \n" , a - SIN_TEST);
printf("b=%0.20f \n" , b);
printf("diff=%0.20f \n" , b - SIN_TEST);
return 0;
}
Output:
a=0.04630944601888796475
diff=0.00000002510121488442
b=0.04630942091767308033
diff=0.00000000000000000000
accuracy gets reduced because big numbers provided to "sin" function
? My example doesn't reveal that (at least for x87 instructions) – MBo