I was motivated to use pandas rolling
feature to perform a rolling multi-factor regression (This question is NOT about rolling multi-factor regression). I expected that I'd be able to use apply
after a df.rolling(2)
and take the resulting pd.DataFrame
extract the ndarray with .values
and perform the requisite matrix multiplication. It didn't work out that way.
Here is what I found:
import pandas as pd
import numpy as np
np.random.seed([3,1415])
df = pd.DataFrame(np.random.rand(5, 2).round(2), columns=['A', 'B'])
X = np.random.rand(2, 1).round(2)
What do objects look like:
print "\ndf = \n", df
print "\nX = \n", X
print "\ndf.shape =", df.shape, ", X.shape =", X.shape
df =
A B
0 0.44 0.41
1 0.46 0.47
2 0.46 0.02
3 0.85 0.82
4 0.78 0.76
X =
[[ 0.93]
[ 0.83]]
df.shape = (5, 2) , X.shape = (2L, 1L)
Matrix multiplication behaves normally:
df.values.dot(X)
array([[ 0.7495],
[ 0.8179],
[ 0.4444],
[ 1.4711],
[ 1.3562]])
Using apply to perform row by row dot product behaves as expected:
df.apply(lambda x: x.values.dot(X)[0], axis=1)
0 0.7495
1 0.8179
2 0.4444
3 1.4711
4 1.3562
dtype: float64
Groupby -> Apply behaves as I'd expect:
df.groupby(level=0).apply(lambda x: x.values.dot(X)[0, 0])
0 0.7495
1 0.8179
2 0.4444
3 1.4711
4 1.3562
dtype: float64
But when I run:
df.rolling(1).apply(lambda x: x.values.dot(X))
I get:
AttributeError: 'numpy.ndarray' object has no attribute 'values'
Ok, so pandas is using straight ndarray
within its rolling
implementation. I can handle that. Instead of using .values
to get the ndarray
, let's try:
df.rolling(1).apply(lambda x: x.dot(X))
shapes (1,) and (2,1) not aligned: 1 (dim 0) != 2 (dim 0)
Wait! What?!
So I created a custom function to look at the what rolling is doing.
def print_type_sum(x):
print type(x), x.shape
return x.sum()
Then ran:
print df.rolling(1).apply(print_type_sum)
<type 'numpy.ndarray'> (1L,)
<type 'numpy.ndarray'> (1L,)
<type 'numpy.ndarray'> (1L,)
<type 'numpy.ndarray'> (1L,)
<type 'numpy.ndarray'> (1L,)
<type 'numpy.ndarray'> (1L,)
<type 'numpy.ndarray'> (1L,)
<type 'numpy.ndarray'> (1L,)
<type 'numpy.ndarray'> (1L,)
<type 'numpy.ndarray'> (1L,)
A B
0 0.44 0.41
1 0.46 0.47
2 0.46 0.02
3 0.85 0.82
4 0.78 0.76
My resulting pd.DataFrame
is the same, that's good. But it printed out 10 single dimensional ndarray
objects. What about rolling(2)
print df.rolling(2).apply(print_type_sum)
<type 'numpy.ndarray'> (2L,)
<type 'numpy.ndarray'> (2L,)
<type 'numpy.ndarray'> (2L,)
<type 'numpy.ndarray'> (2L,)
<type 'numpy.ndarray'> (2L,)
<type 'numpy.ndarray'> (2L,)
<type 'numpy.ndarray'> (2L,)
<type 'numpy.ndarray'> (2L,)
A B
0 NaN NaN
1 0.90 0.88
2 0.92 0.49
3 1.31 0.84
4 1.63 1.58
Same thing, expect output but it printed 8 ndarray
objects. rolling
is producing a single dimensional ndarray
of length window
for each column as opposed to what I expected which was an ndarray
of shape (window, len(df.columns))
.
Question is Why?
I now don't have a way to easily run a rolling multi-factor regression.