I'm constructing a Naive Bayes text classifier from scratch in Python and I am aware that, upon encountering a product of very small probabilities, using a logarithm over the probabilities is a good choice.
The issue now, is that the mathematical function that I'm using has a summation OVER a product of these extremely small probabilities.
To be specific, I'm trying to calculate the total word probabilities given a mixture component (class) over all classes.
Just plainly adding up the logs of these total probabilities is incorrect, since the log of a sum is not equal to the sum of logs.
To give an example, lets say that I have 3 classes, 2000 words and 50 documents. Then I have a word probability matrix called wordprob with 2000 rows and 3 columns.
The algorithm for the total word probability in this example would look like this:
sum = 0
for j in range(0,3):
prob_product = 1
for i in words: #just the index of words from my vocabulary in this document
prob_product = prob_product*wordprob[i,j]
sum = sum + prob_product
What ends up happening is that prob_product becomes 0 on many iterations due to many small probabilities multiplying with each other.
Since I can't easily solve this with logs (because of the summation in front) I'm totally clueless.
Any help will be much appreciated.
logaddexp
function for exactly this purpose. – Mark Dickinsonscipy.misc.logsumexp
may also be of interest.) – Mark Dickinson