I'm trying to write a HDFS output file using Scala, and I'm receiving the error below:
exception in thread "main" org.apache.spark.SparkException: Task not serializable at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:315) at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:305) at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:132) at org.apache.spark.SparkContext.clean(SparkContext.scala:1893) at org.apache.spark.rdd.RDD$$anonfun$foreach$1.apply(RDD.scala:869) at org.apache.spark.rdd.RDD$$anonfun$foreach$1.apply(RDD.scala:868) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:147) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:108) at org.apache.spark.rdd.RDD.withScope(RDD.scala:286) at org.apache.spark.rdd.RDD.foreach(RDD.scala:868) Caused by: java.io.NotSerializableException: java.io.PrintWriter Serialization stack:
All line 23 I need to write a line in output file.
Code Source:
package com.mycode.logs;
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs._
import org.apache.spark.SparkContext._
import org.apache.spark._
import org.apache.spark.deploy.SparkHadoopUtil
import org.apache.spark.sql._
import org.apache.spark.sql.hive.HiveContext
import scala.io._
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import java.io.PrintWriter;
/**
* @author RondenaR
*
*/
object NormalizeMSLogs{
def main(args: Array[String]){
processMsLogs("/user/temporary/*file*")
}
def processMsLogs(path: String){
System.out.println("INFO: ****************** started ******************")
// **** SetMaster is Local only to test *****
// Set context
val sparkConf = new SparkConf().setAppName("tmp-logs").setMaster("local")
val sc = new SparkContext(sparkConf)
val sqlContext = new SQLContext(sc)
val hiveContext = new HiveContext(sc)
// Set HDFS
System.setProperty("HADOOP_USER_NAME", "hdfs")
val hdfsconf = SparkHadoopUtil.get.newConfiguration(sc.getConf)
hdfsconf.set("fs.defaultFS", "hdfs://192.168.248.130:8020")
val hdfs = FileSystem.get(hdfsconf)
val output = hdfs.create(new Path("hdfs://192.168.248.130:8020/tmp/mySample.txt"))
val writer = new PrintWriter(output)
val sourcePath = new Path(path)
var count :Int = 0
var lineF :String = ""
hdfs.globStatus( sourcePath ).foreach{ fileStatus =>
val filePathName = fileStatus.getPath().toString()
val fileName = fileStatus.getPath().getName()
val hdfsfileIn = sc.textFile(filePathName)
val msNode = fileName.substring(1, fileName.indexOf("es"))
System.out.println("filePathName: " + filePathName)
System.out.println("fileName: " + fileName)
System.out.println("hdfsfileIn: " + filePathName)
System.out.println("msNode: " + msNode)
for(line <- hdfsfileIn){
//System.out.println("line = " + line)
count += 1
if(count != 23){
lineF = lineF + line + ", "
}
if(count == 23){
lineF = lineF + line + ", " + msNode
System.out.println(lineF)
writer.write(lineF)
writer.write("\n")
count = 0
lineF = ""
}
} // end for loop in file
} // end foreach loop
writer.close()
System.out.println("INFO: ******************ended ******************")
sc.stop()
}
}
writer
in a distributed block, looks suspicious to me. I would trymap
instead offoreach
, then you have RDD as a result which you can iterate and read/write. You probably need shuffle stage here anyway, IMO no way to avoid it, HDFS has its own idea how to distribute file. – Victor Moroz