I am writing an spark app ,where I need to evaluate the streaming data based on the historical data, which sits in a sql server database
Now the idea is , spark will fetch the historical data from the database and persist it in the memory and will evaluate the streaming data against it .
Now I am getting the streaming data as
import re
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.sql import SQLContext,functions as func,Row
sc = SparkContext("local[2]", "realtimeApp")
ssc = StreamingContext(sc,10)
files = ssc.textFileStream("hdfs://RealTimeInputFolder/")
########Lets get the data from the db which is relavant for streaming ###
driver = "com.microsoft.sqlserver.jdbc.SQLServerDriver"
dataurl = "jdbc:sqlserver://myserver:1433"
db = "mydb"
table = "stream_helper"
credential = "my_credentials"
########basic data for evaluation purpose ########
files_count = files.flatMap(lambda file: file.split( ))
pattern = '(TranAmount=Decimal.{2})(.[0-9]*.[0-9]*)(\\S+ )(TranDescription=u.)([a-zA-z\\s]+)([\\S\\s]+ )(dSc=u.)([A-Z]{2}.[0-9]+)'
tranfiles = "wasb://myserver.blob.core.windows.net/RealTimeInputFolder01/"
def getSqlContextInstance(sparkContext):
if ('sqlContextSingletonInstance' not in globals()):
globals()['sqlContextSingletonInstance'] = SQLContext(sparkContext)
return globals()['sqlContextSingletonInstance']
def pre_parse(logline):
"""
to read files as rows of sql in pyspark streaming using the pattern . for use of logging
added 0,1 in case there is any failure in processing by this pattern
"""
match = re.search(pattern,logline)
if match is None:
return(line,0)
else:
return(
Row(
customer_id = match.group(8)
trantype = match.group(5)
amount = float(match.group(2))
),1)
def parse():
"""
actual processing is happening here
"""
parsed_tran = ssc.textFileStream(tranfiles).map(preparse)
success = parsed_tran.filter(lambda s: s[1] == 1).map(lambda x:x[0])
fail = parsed_tran.filter(lambda s:s[1] == 0).map(lambda x:x[0])
if fail.count() > 0:
print "no of non parsed file : %d", % fail.count()
return success,fail
success ,fail = parse()
Now I want to evaluate it by the data frame that I get from the historical data
base_data = sqlContext.read.format("jdbc").options(driver=driver,url=dataurl,database=db,user=credential,password=credential,dbtable=table).load()
Now since this being returned as a data frame how do I use this for my purpose .
The streaming programming guide here says
"You have to create a SQLContext using the SparkContext that the StreamingContext is using."
Now this makes me even more confused on how to use the existing dataframe with the streaming object . Any help is highly appreciated .
ssc.sparkContext()
– Saif Charaniya