I want to create a synthetic dataset consisting of 2 classes and 3 features for testing a hyperparameter optimization technique for a SVM classifier with a RBF kernel. The hyperparameters are gamma and C (the cost).
I have created my current 3D synthetic dataset as follows:
I have created 10 based points for each class by sampling from a multivariate normal distribution with mean (1,0,0) and (0,1,0), respectively, and unit variance.
I have added more points to each class by picking a base point at random and then sampling a new point from a normal distribution with mean equal to the chosen base point and variance I/5.
It would be a very cool thing if I could determine the best C and gamma from the dataset (before running SVM), so that I can see if my optimization technique provides me the best parameters in the end.
Is there a possibility to calculate the best gamma and C parameter from the synthetic dataset described above?
Or else is there a way to create a synthetic dataset where the best gamma and C parameters are known?