A space optimization for the 0/1 knapsack dynamic programming algorithm is to use a 1-d array (say, A) of size equal to the knapsack capacity, and simply overwrite A[w] (if required) at each iteration i, where A[w] denotes the total value if the first i items are considered and knapsack capacity is w. If this optimization is used, is there a way to reconstruct the list of items picked, perhaps by saving some extra information at each iteration of the DP algorithm? For example, in the Bellman Ford Algorithm a similar space optimization can be implemented, and the shortest path can still be reconstructed as long as we keep a list of the predecessor pointers, ie the last hop (or first, depending on if a source/destination oriented algorithm is being written).
For reference, here is my C++ function for the 0/1 knapsack problem using dynamic programming where I construct a 2-d vector ans such that ans[i][j] denotes the total value considering the first i items and knapsack capacity j. I reconstruct the items picked by reverse traversing this vector ans:
void knapsack(vector<int> v,vector<int>w,int cap){
//v[i]=value of item i-1
//w[i]=weight of item i-1, cap=knapsack capacity
//ans[i][j]=total value if considering 1st i items and capacity j
vector <vector<int> > ans(v.size()+1,vector<int>(cap+1));
//value with 0 items is 0
ans[0]=vector<int>(cap+1,0);
//value with 0 capacity is 0
for (uint i=1;i<v.size()+1;i++){
ans[i][0]=0;
}
//dp
for (uint i=1;i<v.size()+1;i++) {
for (int x=1;x<cap+1;x++) {
if (ans[i-1][x]>=ans[i-1][x-w[i-1]]+v[i-1]||x<w[i-1])
ans[i][x]=ans[i-1][x];
else {
ans[i][x]=ans[i-1][x-w[i-1]]+v[i-1];
}
}
}
cout<<"Total value: "<<ans[v.size()][cap]<<endl;
//reconstruction
cout<<"Items to carry: \n";
for (uint i=v.size();i>0;i--) {
for (int x=cap;x>0;x--) {
if (ans[i][x]==ans[i-1][x]) //item i not in knapsack
break;
else if (ans[i][x]==ans[i-1][x-w[i-1]]+v[i-1]) { //item i in knapsack
cap-=w[i-1];
cout<<i<<"("<<v[i-1]<<"), ";
break;
}
}
}
cout<<endl;
}
A
, but the implementation uses a two-dimensional state spaceans
? So, basically the space_optimized implementaion also usesans
, but discards the rows for smaller values ofi
? – Codorx<w[i-1]
before the other half of the||
condition, so that short-circuiting will preventans[i-1][x-w[i-1]]
trying to access an array element at a negative index, and thus possibly crashing. – j_random_hacker