14
votes

Let's say I'm running a Service Fabric cluster on 5 D1 class (1 core, 3.5GB RAM, 50GB SSD) VMs. and that I'm running 2 reliable services on this cluster, one stateless and one stateful. Let's assume that the replica target is 3.

  1. How to calculate how much can my reliable collections hold?

  2. Let's say I add one or more stateful services. Since I don't really know how the framework distributes services do I need to take most conservative approach and assume that a node may run all of my stateful services on a single node and that their cumulative memory needs to be below the RAM available on a single machine?

1
azure.microsoft.com/en-us/documentation/articles/… has a clue "practically today you're bound to the amount of memory on the box"tymtam
Is question 1 - "What is the maximum they can hold"?masnider
@masnider Yes, it boils down to that.tymtam

1 Answers

28
votes

TLDR - Estimating the expected capacity of a cluster is part art, part science. You can likely get a good lower bound which you may be able to push higher, but for the most part deploying things, running them, and collecting data under your workload's conditions is the best way to answer this question.

1) In general, the collections on a given machine are bounded by the amount of available memory or the amount of available disk space on a node, whichever is lower. Today we keep all data in the collections in memory and also persist it to disk. So the maximum amount that your collections across the cluster can hold is generally (Amount of available memory in the cluster) / (Target Replica Set Size).

Note that "Available Memory" is whatever is left over from other code running on the machines, including the OS. In your above example though you're not running across all of the nodes - you'll only be able to get 3 of them. So, (unrealistically) assuming 0 overhead from these other factors, you could expect to be able to put about 3.5 GB of data into that stateful service replica before you ran out of memory on the nodes on which it was running. There would still be 2 nodes in the cluster left empty.

Let's take another example. Let's say that it is about the same as your example above, except in this case you set up the stateful service to be partitioned. Let's say you picked a partition count of 5. So now on each node, you have a primary replica and 2 secondary replicas from other partitions. In this case, each partition would only be able to hold a maximum of around 1.16 GB of state, but now overall you can pack 5.83 GB of state into the cluster (since all nodes can now be utilized fully). Incidentally, just to prove out the math works, that's (3.5 GB of memory per node * 5 nodes in the cluster) [17.5] / (target replica set size of 3) = 5.83.

In all of these examples, we've also assumed that memory consumption for all partitions and all replicas is the same. A lot of the time that turns out to not be true (at least temporarily) - some partitions can end up with more or less work to do and hence have uneven resource consumption. We also assumed that the secondaries were always the same as the primaries. In the case of the amount of state, it's probably fair to assume that these will track fairly evenly, though for other resource consumption it may not (just something to keep in mind). In the case of uneven consumption, this is really where the rest of Service Fabric's Cluster Resource Management will help, since we can come to know about the consumption of different replicas and pack them efficiently into the cluster to make use of the available space. Automatic reporting of consumption of resources related to state in the collections is on our radar and something we want to do, so in the future, this would be automatic but today you'd have to report this consumption on your own.

2) By default, we will balance the services according to the default metrics (more about metrics is here). So by default, the different replicas of those two different services could end up on the machine, but in your example, you'll end up with 4 nodes with 1 replica from a service on it and then 1 node with two replicas from the two different services. This means that each service (each with 1 partition as per your example) would only be able to consume 1.75 GB of memory in each service for a total of 3.5 GB in the cluster. This is again less than the total available memory of the cluster since there are some portions of nodes that you're not utilizing.

Note that this is the maximum possible consumption, and presuming no consumption outside the service itself. Taking this as your maximum is not advisable. You'll want to reduce it for several reasons, but the most practical reason is to ensure that in the presence of upgrades and failures that there's sufficient available capacity in the cluster. As an example, let's say that you have 5 Upgrade Domains and 5 Fault Domains. Now let's say that a fault domain's worth of nodes fails while you have an upgrade going on in an upgrade domain. This means that (a little less than) 40% of your cluster capacity can be gone at any time, and you probably want enough room left over on the remaining nodes to continue. This means that if your cluster previously could hold 5.83 GB of state (from our prior calculations), in reality you probably don't want to put more than about 3.5 GB of state in it since with more of that the service may not be able to get back to 100% healthy (note also that we don't build replacement replicas immediately so the nodes would have to be down for your ReplicaRestartWaitDuration before you ran into this case). There's a bunch more information about metrics, capacity, buffered capacity (which you can use to ensure that room is left on nodes for the failure cases) and fault and upgrade domains are covered in this article.

There are some other things that practically will limit the amount of state you'll be able to store. You'll want to do several things:

  • Estimate the size of your data. You can make a reasonable estimate up-front of how big your data is by calculating the size of each field your objects hold. Be sure to take into consideration 64-bit references. This will give you a lower-bound starting point.
  • Storage overhead. Each object you store in a collection will come with some overhead for storing that object. In the reliable collections depending on the collection and the operations currently in flight (copy, enumerations, updates, etc.) this overhead can range from between 100 and around 700 bytes per item (row) stored in the collections. Do know also that we're always looking for ways to reduce the amount of overhead we introduce.

We also strongly recommend running your service over some period of time and measuring actual resource consumption via performance counters. Simulating some sort of real workload and then measuring the actual usage of the metrics you care about will serve you pretty well. The reason we recommend this in particular is that you will be able to see consumption from things like which CLR object heap your objects end up placed in, how often GC is running, if there's leaks, or other things like this which will impact the amount of memory you can actually utilize.

I know that this has been a long answer but I hope you find it helpful and complete.