It's pretty simple, if you read the KmeansModel's documentation, you will notice that it has two constructors, one of them:
new KMeansModel(clusterCenters: Array[Vector])
Therefore, you can instantiate an object having KMeans' centroids. I show an example below.
import org.apache.spark.mllib.clustering.KMeansModel
import org.apache.spark.mllib.linalg.Vectors
val rdd = sc.parallelize(List(
Vectors.dense(Array(-0.1, 0.0, 0.0)),
Vectors.dense(Array(9.0, 9.0, 9.0)),
Vectors.dense(Array(3.0, 2.0, 1.0))))
val centroids = Array(
Vectors.dense(Array(0.0, 0.0, 0.0)),
Vectors.dense(Array(0.1, 0.1, 0.1)),
Vectors.dense(Array(0.2, 0.2, 0.2)),
Vectors.dense(Array(9.0, 9.0, 9.0)),
Vectors.dense(Array(9.1, 9.1, 9.1)),
Vectors.dense(Array(9.2, 9.2, 9.2)))
val model = new KMeansModel(clusterCenters=centroids)
model.predict(rdd).take(10)
// res13: Array[Int] = Array(0, 3, 2)