I am trying to convert a kafka message which is a huge RDD to parquet format and save in HDFS using spark streaming. Its a syslog message, like name1=value1|name2=value2|name3=value3 in each line, any pointers on how to achieve this in spark streaming ?
2 Answers
2
votes
You can save an RDD
to parquet without converting to DataFrame
as long as you have an avro
schema for it
here is a sample function:
public <T> void save(JavaRDD<T> rdd, Class<T> clazz, Time timeStamp, Schema schema, String path) throws IOException {
Job job = Job.getInstance();
ParquetOutputFormat.setWriteSupportClass(job, AvroWriteSupport.class);
AvroParquetOutputFormat.setSchema(job, schema);
LazyOutputFormat.setOutputFormatClass(job, new ParquetOutputFormat<T>().getClass());
job.getConfiguration().set("mapreduce.fileoutputcommitter.marksuccessfuljobs", "false");
job.getConfiguration().set("parquet.enable.summary-metadata", "false");
//save the file
rdd.mapToPair(me -> new Tuple2(null, me))
.saveAsNewAPIHadoopFile(
String.format("%s/%s", path, timeStamp.milliseconds()),
Void.class,
clazz,
LazyOutputFormat.class,
job.getConfiguration());
}
1
votes