I have a function J(x,y,z) that gives me the result of those coordinates. This function is convex. What is needed from me is to find the minimum value of this huge matrix. At first I tried to loop through all of them, calculate then search with min function, but that takes too long ...
so I decided to take advantage of the convexity.
Take a random(for now) set of coordinates, that will be the center of my small 3x3x3 matrice, find the local minimum and make it the center for the next matrice. This will continue until we reach the global minimum.
Another issue is that the function is not perfectly convex, so this problem can appear as well
so I'm thinking of a control measure, when it finds a fake minimum, increase the search range to make sure of it. How would you advise me to go with it? Is this approach good? Or should I look into something else?
This is something I started myself but I am fairly new to Matlab and I am not sure how to continue.
clear all
clc
min=100;
%the initial size of the search matrix 2*level +1
level=1;
i=input('Enter the starting coordinate for i (X) : ');
j=input('Enter the starting coordinate for j (Y) : ');
k=input('Enter the starting coordinate for k (Z) : ');
for m=i-level:i+level
for n=j-level:j+level
for p=k-level:k+level
A(m,n,p)=J(m,n,p);
if A(m,n,p)<min
min=A(m,n,p);
end
end
end
end
display(min, 'Minim');
[r,c,d] = ind2sub(size(A),find(A ==min));
display(r,'X');
display(c,'Y');
display(d,'Z');
Any guidance, improvement and constructive criticism are appreciated. Thanks in advance.
fminunc
orfmincon
? Have you tried other algorithms like Gradient Descent, Conjugate Gradient? What can and can't you do here? Minor Note: The first image you provided is from Andrew Ng's Coursera Machine Learning course. - rayryengmin
, that will override the built-inmin()
function. Use ofi
andj
is also discouraged due to the imaginary unit. - Andras Deak