I came up with a method that looks like it's working. It's a little ugly though.
The first step is to compare top 32 bits as 2 compliment #’s
MSB sign bit stays, so numbers keep correct relations
-1 —> -1
0 —> 0
9223372036854775807 = 0x7fff ffff ffff ffff -> 0x7ffff ffff = 2147483647
So returning the result from the MSB's works unless they are equal, then the LSB's need to get checked.
I have a few cases to establish the some patterns:
-1 = 0xffff ffff ffff ffff
-2 = 0xffff ffff ffff fffe
32 bit is:
-1 -> 0xffff ffff = -1
-2 -> 0xffff fffe = -2
-1 > -2 would be like -1 > -2 : GOOD
And
8589934591 = 0x0000 0001 ffff ffff
8589934590 = 0x0000 0001 ffff fffe
32 bit is:
8589934591 -> ffff ffff = -1
8589934590 -> ffff fffe = -2
8589934591 > 8589934590 would be -1 > -2 : GOOD
The sign bit on MSB’s doesn’t matter b/c negative numbers have the same relationship between themselves as positive numbers. e.g regardless of sign bit, lsb values of 0xff
> 0xfe
, always.
What about if the MSB on the lower 32 bits is different?
0xff7f ffff 7fff ffff = -36,028,799,166,447,617
0xff7f ffff ffff ffff = -36,028,797,018,963,969
32 bit is:
-..799.. -> 0x7fff ffff = 2147483647
-..797.. -> 0xffff ffff = -1
-..799.. < -..797.. would be 2147483647 < -1 : BAD!
So we need to ignore the sign bit on the lower 32 bits. And since the relationships are the same for the LSBs regardless of sign, just using
the lowest 32 bits unsigned works for all cases.
This means I want signed for the MSB's and unsigned for the LSBs - so chaging I4
to i4
for the LSBs. Also making big endian official and using '>' on the struct.unpack calls:
-- ...
local comp_int64s = function (as0, au1, bs0, bu1)
if as0 > bs0 then
return 1
elseif as0 < bs0 then
return -1
else
-- msb's equal comparing lsbs - these are unsigned
if au1 > bu1 then
return 1
elseif au1 < bu1 then
return -1
else
return 0
end
end
end
local l, as0, au1, bs0, bu1
as0, l = bit.tobit(struct.unpack(">i4", ARGV[1]))
au1, l = bit.tobit(struct.unpack(">I4", ARGV[1], 5))
bs0, l = bit.tobit(struct.unpack(">i4", blob))
bu1, l = bit.tobit(struct.unpack(">I4", blob, 5))
print("Cmp result", comp_int64s(as0, au1, bs0, bu1))