I have 2 arrays: one with x-coordinates, the other with y-coordinates. Both are a normal distribution as a result of a Monte-Carlo simulation. I know how to find the sigma and mu for both array's, and get a 95% confidence interval:
[mu,sigma]=normfit(x_array);
hist(x_array);
x=norminv([0.025 0.975],mu,sigma)
However, both array's are correlated with each other. To plot the probability distribution of the combined array's, i use the multivariate normal distribution. In MATLAB this gives me:
[MuX,SigmaX]=normfit(x_array);
[MuY,SigmaY]=normfit(y_array);
mu = [MuX MuY];
Sigma=cov(x_array,y_array);
x1 = MuX-4*SigmaX:5:MuX+4*SigmaX; x2 = MuY-4*SigmaY:5:MuY+4*SigmaY;
[X1,X2] = meshgrid(x1,x2);
F = mvnpdf([X1(:) X2(:)],mu,Sigma);
F = reshape(F,length(x2),length(x1));
surf(x1,x2,F);
caxis([min(F(:))-.5*range(F(:)),max(F(:))]);
set(gca,'Ydir','reverse')
xlabel('x0-as'); ylabel('y0-as'); zlabel('Probability Density');
So far so good. Now I want to calculate the 95% probability area. I'am looking for a function as mndinv
, just as norminv
. However, such a function doesn't exist in MATLAB, which makes sense because there are endless possibilities... Does somebody have a tip about how to get a 95% probability area? Thanks in advance.