Language:
{(a^i)(b^j)(c^k)(d^l) : i = 0 or j = k = l}
We take word
w = a^0 b^n c^n d^n
Which obviously belongs to the language because j = k = l
w = uvxyz
|vxy| <= n
|vy| > 1
and now v and y can be:
just a single character and if we pump single character the word is no longer in the language
two characters, count of the third will be lower so the word is not in the language
So, the proof that this language is not CF is not supposed to be do-able with standard pumping lemma, just with the ogdens lemma, but I don't understand why the proof above is invalid.