I'm trying to do some NLP text clean up of some Unicode columns in a PySpark DataFrame. I've tried in Spark 1.3, 1.5 and 1.6 and can't seem to get things to work for the life of me. I've also tried using Python 2.7 and Python 3.4.
I've created an extremely simple udf as seen below that should just return a string back for each record in a new column. Other functions will manipulate the text and then return the changed text back in a new column.
import pyspark
from pyspark.sql import SQLContext
from pyspark.sql.types import *
from pyspark.sql import SQLContext
from pyspark.sql.functions import udf
def dummy_function(data_str):
cleaned_str = 'dummyData'
return cleaned_str
dummy_function_udf = udf(dummy_function, StringType())
Some sample data can be unzipped from here.
Here is the code I use to import the data and then apply the udf on.
# Load a text file and convert each line to a Row.
lines = sc.textFile("classified_tweets.txt")
parts = lines.map(lambda l: l.split("\t"))
training = parts.map(lambda p: (p[0], p[1]))
# Create dataframe
training_df = sqlContext.createDataFrame(training, ["tweet", "classification"])
training_df.show(5)
+--------------------+--------------+
| tweet|classification|
+--------------------+--------------+
|rt @jiffyclub: wi...| python|
|rt @arnicas: ipyt...| python|
|rt @treycausey: i...| python|
|what's my best op...| python|
|rt @raymondh: #py...| python|
+--------------------+--------------+
# Apply UDF function
df = training_df.withColumn("dummy", dummy_function_udf(training_df['tweet']))
df.show(5)
When I run the df.show(5) I get the following error. I understand that the problem most likely doesn't stem from the show() but the trace doesn't give me much help.
---------------------------------------------------------------------------Py4JJavaError Traceback (most recent call last)<ipython-input-19-0b21c233c724> in <module>()
1 df = training_df.withColumn("dummy", dummy_function_udf(training_df['tweet']))
----> 2 df.show(5)
/Users/dreyco676/spark-1.6.0-bin-hadoop2.6/python/pyspark/sql/dataframe.py in show(self, n, truncate)
255 +---+-----+
256 """
--> 257 print(self._jdf.showString(n, truncate))
258
259 def __repr__(self):
/Users/dreyco676/spark-1.6.0-bin-hadoop2.6/python/lib/py4j-0.9-src.zip/py4j/java_gateway.py in __call__(self, *args)
811 answer = self.gateway_client.send_command(command)
812 return_value = get_return_value(
--> 813 answer, self.gateway_client, self.target_id, self.name)
814
815 for temp_arg in temp_args:
/Users/dreyco676/spark-1.6.0-bin-hadoop2.6/python/pyspark/sql/utils.py in deco(*a, **kw)
43 def deco(*a, **kw):
44 try:
---> 45 return f(*a, **kw)
46 except py4j.protocol.Py4JJavaError as e:
47 s = e.java_exception.toString()
/Users/dreyco676/spark-1.6.0-bin-hadoop2.6/python/lib/py4j-0.9-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
306 raise Py4JJavaError(
307 "An error occurred while calling {0}{1}{2}.\n".
--> 308 format(target_id, ".", name), value)
309 else:
310 raise Py4JError(
Py4JJavaError: An error occurred while calling o474.showString.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 10.0 failed 1 times, most recent failure: Lost task 0.0 in stage 10.0 (TID 10, localhost): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "/Users/dreyco676/spark-1.6.0-bin-hadoop2.6/python/lib/pyspark.zip/pyspark/worker.py", line 111, in main
process()
File "/Users/dreyco676/spark-1.6.0-bin-hadoop2.6/python/lib/pyspark.zip/pyspark/worker.py", line 106, in process
serializer.dump_stream(func(split_index, iterator), outfile)
File "/Users/dreyco676/spark-1.6.0-bin-hadoop2.6/python/lib/pyspark.zip/pyspark/serializers.py", line 263, in dump_stream
vs = list(itertools.islice(iterator, batch))
File "<ipython-input-12-4bc30395aac5>", line 4, in <lambda>
IndexError: list index out of range
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:166)
at org.apache.spark.api.python.PythonRunner$$anon$1.next(PythonRDD.scala:129)
at org.apache.spark.api.python.PythonRunner$$anon$1.next(PythonRDD.scala:125)
at org.apache.spark.InterruptibleIterator.next(InterruptibleIterator.scala:43)
at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
at scala.collection.Iterator$GroupedIterator.takeDestructively(Iterator.scala:913)
at scala.collection.Iterator$GroupedIterator.go(Iterator.scala:929)
at scala.collection.Iterator$GroupedIterator.fill(Iterator.scala:968)
at scala.collection.Iterator$GroupedIterator.hasNext(Iterator.scala:972)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at org.apache.spark.api.python.PythonRDD$.writeIteratorToStream(PythonRDD.scala:452)
at org.apache.spark.api.python.PythonRunner$WriterThread$$anonfun$run$3.apply(PythonRDD.scala:280)
at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1741)
at org.apache.spark.api.python.PythonRunner$WriterThread.run(PythonRDD.scala:239)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1845)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1858)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:212)
at org.apache.spark.sql.execution.Limit.executeCollect(basicOperators.scala:165)
at org.apache.spark.sql.execution.SparkPlan.executeCollectPublic(SparkPlan.scala:174)
at org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1538)
at org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1538)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
at org.apache.spark.sql.DataFrame.withNewExecutionId(DataFrame.scala:2125)
at org.apache.spark.sql.DataFrame.org$apache$spark$sql$DataFrame$$execute$1(DataFrame.scala:1537)
at org.apache.spark.sql.DataFrame.org$apache$spark$sql$DataFrame$$collect(DataFrame.scala:1544)
at org.apache.spark.sql.DataFrame$$anonfun$head$1.apply(DataFrame.scala:1414)
at org.apache.spark.sql.DataFrame$$anonfun$head$1.apply(DataFrame.scala:1413)
at org.apache.spark.sql.DataFrame.withCallback(DataFrame.scala:2138)
at org.apache.spark.sql.DataFrame.head(DataFrame.scala:1413)
at org.apache.spark.sql.DataFrame.take(DataFrame.scala:1495)
at org.apache.spark.sql.DataFrame.showString(DataFrame.scala:171)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381)
at py4j.Gateway.invoke(Gateway.java:259)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:209)
at java.lang.Thread.run(Thread.java:745)
Caused by: org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "/Users/dreyco676/spark-1.6.0-bin-hadoop2.6/python/lib/pyspark.zip/pyspark/worker.py", line 111, in main
process()
File "/Users/dreyco676/spark-1.6.0-bin-hadoop2.6/python/lib/pyspark.zip/pyspark/worker.py", line 106, in process
serializer.dump_stream(func(split_index, iterator), outfile)
File "/Users/dreyco676/spark-1.6.0-bin-hadoop2.6/python/lib/pyspark.zip/pyspark/serializers.py", line 263, in dump_stream
vs = list(itertools.islice(iterator, batch))
File "<ipython-input-12-4bc30395aac5>", line 4, in <lambda>
IndexError: list index out of range
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:166)
at org.apache.spark.api.python.PythonRunner$$anon$1.next(PythonRDD.scala:129)
at org.apache.spark.api.python.PythonRunner$$anon$1.next(PythonRDD.scala:125)
at org.apache.spark.InterruptibleIterator.next(InterruptibleIterator.scala:43)
at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
at scala.collection.Iterator$GroupedIterator.takeDestructively(Iterator.scala:913)
at scala.collection.Iterator$GroupedIterator.go(Iterator.scala:929)
at scala.collection.Iterator$GroupedIterator.fill(Iterator.scala:968)
at scala.collection.Iterator$GroupedIterator.hasNext(Iterator.scala:972)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at org.apache.spark.api.python.PythonRDD$.writeIteratorToStream(PythonRDD.scala:452)
at org.apache.spark.api.python.PythonRunner$WriterThread$$anonfun$run$3.apply(PythonRDD.scala:280)
at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1741)
at org.apache.spark.api.python.PythonRunner$WriterThread.run(PythonRDD.scala:239)
Actual function I'm trying:
def tag_and_remove(data_str):
cleaned_str = ' '
# noun tags
nn_tags = ['NN', 'NNP', 'NNP', 'NNPS', 'NNS']
# adjectives
jj_tags = ['JJ', 'JJR', 'JJS']
# verbs
vb_tags = ['VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ']
nltk_tags = nn_tags + jj_tags + vb_tags
# break string into 'words'
text = data_str.split()
# tag the text and keep only those with the right tags
tagged_text = pos_tag(text)
for tagged_word in tagged_text:
if tagged_word[1] in nltk_tags:
cleaned_str += tagged_word[0] + ' '
return cleaned_str
tag_and_remove_udf = udf(tag_and_remove, StringType())
l.split('\t')
returns more than one item? The index error is likely fromtraining = parts.map(...)
. What does your data look like - are you sure there are tabs used everywhere? – AChampionl.split()
would split on any whitespace. – AChampiontraining_df.show()
to confirm that it's not a problem with the original data? – Kirk Broadhurst