For additional examples, here are all the samples from Java 8 Stream Tutorial converted to Kotlin. The title of each example, is derived from the source article:
How streams work
// Java:
List<String> myList = Arrays.asList("a1", "a2", "b1", "c2", "c1");
myList.stream()
.filter(s -> s.startsWith("c"))
.map(String::toUpperCase)
.sorted()
.forEach(System.out::println);
// C1
// C2
// Kotlin:
val list = listOf("a1", "a2", "b1", "c2", "c1")
list.filter { it.startsWith('c') }.map (String::toUpperCase).sorted()
.forEach (::println)
Different Kinds of Streams #1
// Java:
Arrays.asList("a1", "a2", "a3")
.stream()
.findFirst()
.ifPresent(System.out::println);
// Kotlin:
listOf("a1", "a2", "a3").firstOrNull()?.apply(::println)
or, create an extension function on String called ifPresent:
// Kotlin:
inline fun String?.ifPresent(thenDo: (String)->Unit) = this?.apply { thenDo(this) }
// now use the new extension function:
listOf("a1", "a2", "a3").firstOrNull().ifPresent(::println)
See also: apply()
function
See also: Extension Functions
See also: ?.
Safe Call operator, and in general nullability: In Kotlin, what is the idiomatic way to deal with nullable values, referencing or converting them
Different Kinds of Streams #2
// Java:
Stream.of("a1", "a2", "a3")
.findFirst()
.ifPresent(System.out::println);
// Kotlin:
sequenceOf("a1", "a2", "a3").firstOrNull()?.apply(::println)
Different Kinds of Streams #3
// Java:
IntStream.range(1, 4).forEach(System.out::println);
// Kotlin: (inclusive range)
(1..3).forEach(::println)
Different Kinds of Streams #4
// Java:
Arrays.stream(new int[] {1, 2, 3})
.map(n -> 2 * n + 1)
.average()
.ifPresent(System.out::println); // 5.0
// Kotlin:
arrayOf(1,2,3).map { 2 * it + 1}.average().apply(::println)
Different Kinds of Streams #5
// Java:
Stream.of("a1", "a2", "a3")
.map(s -> s.substring(1))
.mapToInt(Integer::parseInt)
.max()
.ifPresent(System.out::println); // 3
// Kotlin:
sequenceOf("a1", "a2", "a3")
.map { it.substring(1) }
.map(String::toInt)
.max().apply(::println)
Different Kinds of Streams #6
// Java:
IntStream.range(1, 4)
.mapToObj(i -> "a" + i)
.forEach(System.out::println);
// a1
// a2
// a3
// Kotlin: (inclusive range)
(1..3).map { "a$it" }.forEach(::println)
Different Kinds of Streams #7
// Java:
Stream.of(1.0, 2.0, 3.0)
.mapToInt(Double::intValue)
.mapToObj(i -> "a" + i)
.forEach(System.out::println);
// a1
// a2
// a3
// Kotlin:
sequenceOf(1.0, 2.0, 3.0).map(Double::toInt).map { "a$it" }.forEach(::println)
Why Order Matters
This section of the Java 8 Stream Tutorial is the same for Kotlin and Java.
Reusing Streams
In Kotlin, it depends on the type of collection whether it can be consumed more than once. A Sequence
generates a new iterator every time, and unless it asserts "use only once" it can reset to the start each time it is acted upon. Therefore while the following fails in Java 8 stream, but works in Kotlin:
// Java:
Stream<String> stream =
Stream.of("d2", "a2", "b1", "b3", "c").filter(s -> s.startsWith("b"));
stream.anyMatch(s -> true); // ok
stream.noneMatch(s -> true); // exception
// Kotlin:
val stream = listOf("d2", "a2", "b1", "b3", "c").asSequence().filter { it.startsWith('b' ) }
stream.forEach(::println) // b1, b2
println("Any B ${stream.any { it.startsWith('b') }}") // Any B true
println("Any C ${stream.any { it.startsWith('c') }}") // Any C false
stream.forEach(::println) // b1, b2
And in Java to get the same behavior:
// Java:
Supplier<Stream<String>> streamSupplier =
() -> Stream.of("d2", "a2", "b1", "b3", "c")
.filter(s -> s.startsWith("a"));
streamSupplier.get().anyMatch(s -> true); // ok
streamSupplier.get().noneMatch(s -> true); // ok
Therefore in Kotlin the provider of the data decides if it can reset back and provide a new iterator or not. But if you want to intentionally constrain a Sequence
to one time iteration, you can use constrainOnce()
function for Sequence
as follows:
val stream = listOf("d2", "a2", "b1", "b3", "c").asSequence().filter { it.startsWith('b' ) }
.constrainOnce()
stream.forEach(::println) // b1, b2
stream.forEach(::println) // Error:java.lang.IllegalStateException: This sequence can be consumed only once.
Advanced Operations
Collect example #5 (yes, I skipped those already in the other answer)
// Java:
String phrase = persons
.stream()
.filter(p -> p.age >= 18)
.map(p -> p.name)
.collect(Collectors.joining(" and ", "In Germany ", " are of legal age."));
System.out.println(phrase);
// In Germany Max and Peter and Pamela are of legal age.
// Kotlin:
val phrase = persons.filter { it.age >= 18 }.map { it.name }
.joinToString(" and ", "In Germany ", " are of legal age.")
println(phrase)
// In Germany Max and Peter and Pamela are of legal age.
And as a side note, in Kotlin we can create simple data classes and instantiate the test data as follows:
// Kotlin:
// data class has equals, hashcode, toString, and copy methods automagically
data class Person(val name: String, val age: Int)
val persons = listOf(Person("Tod", 5), Person("Max", 33),
Person("Frank", 13), Person("Peter", 80),
Person("Pamela", 18))
Collect example #6
// Java:
Map<Integer, String> map = persons
.stream()
.collect(Collectors.toMap(
p -> p.age,
p -> p.name,
(name1, name2) -> name1 + ";" + name2));
System.out.println(map);
// {18=Max, 23=Peter;Pamela, 12=David}
Ok, a more interest case here for Kotlin. First the wrong answers to explore variations of creating a Map
from a collection/sequence:
// Kotlin:
val map1 = persons.map { it.age to it.name }.toMap()
println(map1)
// output: {18=Max, 23=Pamela, 12=David}
// Result: duplicates overridden, no exception similar to Java 8
val map2 = persons.toMap({ it.age }, { it.name })
println(map2)
// output: {18=Max, 23=Pamela, 12=David}
// Result: same as above, more verbose, duplicates overridden
val map3 = persons.toMapBy { it.age }
println(map3)
// output: {18=Person(name=Max, age=18), 23=Person(name=Pamela, age=23), 12=Person(name=David, age=12)}
// Result: duplicates overridden again
val map4 = persons.groupBy { it.age }
println(map4)
// output: {18=[Person(name=Max, age=18)], 23=[Person(name=Peter, age=23), Person(name=Pamela, age=23)], 12=[Person(name=David, age=12)]}
// Result: closer, but now have a Map<Int, List<Person>> instead of Map<Int, String>
val map5 = persons.groupBy { it.age }.mapValues { it.value.map { it.name } }
println(map5)
// output: {18=[Max], 23=[Peter, Pamela], 12=[David]}
// Result: closer, but now have a Map<Int, List<String>> instead of Map<Int, String>
And now for the correct answer:
// Kotlin:
val map6 = persons.groupBy { it.age }.mapValues { it.value.joinToString(";") { it.name } }
println(map6)
// output: {18=Max, 23=Peter;Pamela, 12=David}
// Result: YAY!!
We just needed to join the matching values to collapse the lists and provide a transformer to jointToString
to move from Person
instance to the Person.name
.
Collect example #7
Ok, this one can easily be done without a custom Collector
, so let's solve it the Kotlin way, then contrive a new example that shows how to do a similar process for Collector.summarizingInt
which does not natively exist in Kotlin.
// Java:
Collector<Person, StringJoiner, String> personNameCollector =
Collector.of(
() -> new StringJoiner(" | "), // supplier
(j, p) -> j.add(p.name.toUpperCase()), // accumulator
(j1, j2) -> j1.merge(j2), // combiner
StringJoiner::toString); // finisher
String names = persons
.stream()
.collect(personNameCollector);
System.out.println(names); // MAX | PETER | PAMELA | DAVID
// Kotlin:
val names = persons.map { it.name.toUpperCase() }.joinToString(" | ")
It's not my fault they picked a trivial example!!! Ok, here is a new summarizingInt
method for Kotlin and a matching sample:
SummarizingInt Example
// Java:
IntSummaryStatistics ageSummary =
persons.stream()
.collect(Collectors.summarizingInt(p -> p.age));
System.out.println(ageSummary);
// IntSummaryStatistics{count=4, sum=76, min=12, average=19.000000, max=23}
// Kotlin:
// something to hold the stats...
data class SummaryStatisticsInt(var count: Int = 0,
var sum: Int = 0,
var min: Int = Int.MAX_VALUE,
var max: Int = Int.MIN_VALUE,
var avg: Double = 0.0) {
fun accumulate(newInt: Int): SummaryStatisticsInt {
count++
sum += newInt
min = min.coerceAtMost(newInt)
max = max.coerceAtLeast(newInt)
avg = sum.toDouble() / count
return this
}
}
// Now manually doing a fold, since Stream.collect is really just a fold
val stats = persons.fold(SummaryStatisticsInt()) { stats, person -> stats.accumulate(person.age) }
println(stats)
// output: SummaryStatisticsInt(count=4, sum=76, min=12, max=23, avg=19.0)
But it is better to create an extension function, 2 actually to match styles in Kotlin stdlib:
// Kotlin:
inline fun Collection<Int>.summarizingInt(): SummaryStatisticsInt
= this.fold(SummaryStatisticsInt()) { stats, num -> stats.accumulate(num) }
inline fun <T: Any> Collection<T>.summarizingInt(transform: (T)->Int): SummaryStatisticsInt =
this.fold(SummaryStatisticsInt()) { stats, item -> stats.accumulate(transform(item)) }
Now you have two ways to use the new summarizingInt
functions:
val stats2 = persons.map { it.age }.summarizingInt()
// or
val stats3 = persons.summarizingInt { it.age }
And all of these produce the same results. We can also create this extension to work on Sequence
and for appropriate primitive types.
For fun, compare the Java JDK code vs. Kotlin custom code required to implement this summarization.
collect(Collectors.toList())
or similar, you might hit this issue: stackoverflow.com/a/35722167/3679676 (the issue, with workarounds) – Jayson Minard