The graph is unweighted and undirected.
Given two vertices s and t, and stride k, I want to find the shortest path between them that is:
Of length divisible by k
Every k "steps" in the path, counting from the first, are a simple path.
Meaning, the shortest non-simple path that can only "jump" k vertices at every step (exactly k), and every "jump" must be a simple sub-path.
I think this problem is equal to constructing a second graph, G', where (u, v) are an edge in G' if there exists a path of length k in G, because a BFS scan would give the required path -- but I haven't been able to construct such a graph in reasonable time (apparently it's an NP problem). Is there an alternative algorithm?