I have a dataset with the following structure:
Features Method Distance V1 V2 ........ V100
V1V2 LOF A 4 5 ......... 6
.
.
.
V1V2V3V4V5 Gaussian C 7 8 ......... 7
The dataset is composed by 624 rows and 103 columns. The three first columns correspond with the information of each row and the rest of columns from V1 to V100 with the data.
I need to create a multiplot 26x8 barplots showing the mean value and the standard error of the mean. I add a function to calculate the standard error of the mean.
#function for standard error of the mean
sem <- function(x){
sd(x)/sqrt(length(x))
}
Each barplot should show the mean value from V1 to V100 and the standard error of the mean for each Distance A, B, C.
An example of dataset is available below
df <- read.table(text=" Features Method Distance V1 V2 V3 V4 V5 V6 V7
V1V2 LOF A 11.764706 3.703704 15.384615 9.090909 9.090909 8.000000 7.407407
V1V2 Mahalanobis A 11.764706 33.333333 15.384615 9.090909 9.090909 28.571429 33.333333
V1V2 Cook A 40.540541 6.666667 24.390244 24.358974 32.608696 15.584416 17.647059
V1V2 DIFFTS A 24.590164 4.958678 28.169014 26.950355 30.588235 47.058824 10.909091
V1V2 OCSVM A 36.585366 25.000000 57.142857 35.514019 88.372093 8.988764 5.825243
V1V2 DBSCAN A 44.117647 21.428571 30.769231 51.351351 41.269841 14.814815 6.976744
V1V2 PCA A 11.764706 33.333333 15.384615 9.090909 9.090909 28.571429 33.333333
V1V2 Gaussian A 1.886792 3.278689 1.869159 1.398601 2.597403 2.197802 4.878049
V1V3 LOF A 12.698413 20.000000 55.000000 6.666667 33.333333 29.787234 2.777778
V1V3 Mahalanobis A 11.764706 33.333333 15.384615 9.090909 9.090909 28.571429 33.333333",header=T)
An example of plot should be like this but with the mean and the standard error of the mean.
Raúl