1
votes

I am working with the sample code follow document of Apache Spark: https://spark.apache.org/docs/latest/ml-features.html#countvectorizer

    import java.util.Arrays;
    import org.apache.spark.SparkConf;
    import org.apache.spark.api.java.JavaSparkContext;
    import org.apache.spark.ml.feature.CountVectorizer;
    import org.apache.spark.ml.feature.CountVectorizerModel;
    import org.apache.spark.sql.DataFrame;
    import org.apache.spark.sql.Row;
    import org.apache.spark.sql.RowFactory;
    import org.apache.spark.sql.SQLContext;
    import org.apache.spark.sql.types.*;
    public class CountVectorizer_Demo {
    public static void main(String[] args) {
        SparkConf conf = new SparkConf().setAppName("LDA Online").setMaster(
                "local");
        JavaSparkContext sc = new JavaSparkContext(conf);

        SQLContext sqlContext = new SQLContext(sc);

        // Input data: Each row is a bag of words from a sentence or document.
        JavaRDD<Row> jrdd = sc.parallelize(Arrays.asList(
          RowFactory.create(Arrays.asList("a", "b", "c")),
          RowFactory.create(Arrays.asList("a", "b", "b", "c", "a"))
        ));
        StructType schema = new StructType(new StructField [] {
          new StructField("text", new ArrayType(DataTypes.StringType, true), false, Metadata.empty())
        });
        DataFrame df = sqlContext.createDataFrame(jrdd, schema);

        // fit a CountVectorizerModel from the corpus
        CountVectorizerModel cvModel = new CountVectorizer()
          .setInputCol("text")
          .setOutputCol("feature")
          .setVocabSize(3)
          .setMinDF(2) // a term must appear in more or equal to 2 documents to be included in the vocabulary
          .fit(df);

        // alternatively, define CountVectorizerModel with a-priori vocabulary
        CountVectorizerModel cvm = new CountVectorizerModel(new String[]{"a", "b", "c"})
          .setInputCol("text")
          .setOutputCol("feature");

        cvModel.transform(df).show();
    }
}

But I have got error message:

15/10/22 23:04:20 INFO BlockManagerMasterActor: Registering block manager localhost:56882 with 703.6 MB RAM, BlockManagerId(, localhost, 56882) 15/10/22 23:04:20 INFO BlockManagerMaster: Registered BlockManager Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/spark/sql/catalyst/InternalRow at org.apache.spark.ml.feature.CountVectorizerParams$class.validateAndTransformSchema(CountVectorizer.scala:72) at org.apache.spark.ml.feature.CountVectorizer.validateAndTransformSchema(CountVectorizer.scala:107) at org.apache.spark.ml.feature.CountVectorizer.transformSchema(CountVectorizer.scala:168) at org.apache.spark.ml.PipelineStage.transformSchema(Pipeline.scala:62) at org.apache.spark.ml.feature.CountVectorizer.fit(CountVectorizer.scala:130) at main.CountVectorizer_Demo.main(CountVectorizer_Demo.java:39) Caused by: java.lang.ClassNotFoundException: org.apache.spark.sql.catalyst.InternalRow at java.net.URLClassLoader$1.run(URLClassLoader.java:366) at java.net.URLClassLoader$1.run(URLClassLoader.java:355) at java.security.AccessController.doPrivileged(Native Method) at java.net.URLClassLoader.findClass(URLClassLoader.java:354) at java.lang.ClassLoader.loadClass(ClassLoader.java:425) at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:308) at java.lang.ClassLoader.loadClass(ClassLoader.java:358) ... 6 more

Thank in advance.

1

1 Answers

0
votes

Many thanks to everyone. I have solved my problem by add dependency:

<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-catalyst_2.10</artifactId>
    <version>1.5.1</version>
</dependency>