I am fetching data from HDFS and storing it in a Spark RDD. Spark creates the number of partitions based on the number of HDFS blocks. This leads to a large number of empty partitions which also get processed during piping. To remove this overhead, I want to filter out all the empty partitions from the RDD. I am aware of coalesce and repartition, but there is no guarantee that all the empty partitions will be removed.
Is there any other way to go about this?
RangePartitionerorHashPartitioner. If not you can use partition based on random numbers. - zero323repartition... - Glennie Helles Sindholt