It seems like @akrun's answer only addresses the cases when you can type in the names of all the variables, whether that's using mutate
directly with mutate(pmax_value=pmax(var1, var2))
or when using lazy evaluation with mutate_
and interp
via mutate_(interp(~pmax(v1, v2), v1=as.name(var1), v2=as.name(var2))
.
I can see two ways to do this if you want to use the colon syntax Sepal.Length:Petal.Width
or if you happen to have a vector with the column names.
The first is more elegant. You tidy the data and take the maximum among the values when grouped:
data(iris)
library(dplyr)
library(tidyr)
iris_id = iris %>% mutate(id=1:nrow(.))
iris_id %>%
gather('attribute', 'value', Sepal.Length:Petal.Width) %>%
group_by(id) %>%
summarize(max_attribute=max(value)) %>%
right_join(iris_id, by='id') %>%
head(3)
## # A tibble: 3 × 7
## id max_attribute Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## <int> <dbl> <dbl> <dbl> <dbl> <dbl> <fctr>
## 1 1 5.1 5.1 3.5 1.4 0.2 setosa
## 2 2 4.9 4.9 3.0 1.4 0.2 setosa
## 3 3 4.7 4.7 3.2 1.3 0.2 setosa
The harder way is to use an interpolated formula. This is good if you have a character vector with the names of the variables to be max'ed over or if you the table is too tall/wide for it to be tidied.
# Make a character vector of the names of the columns we want to take the
# maximum over
target_columns = iris %>% select(-Species) %>% names
## [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
# Make a vector of dummy variables that will take the place of the real
# column names inside the interpolated formula
dummy_vars = sapply(1:length(target_columns), function(i) sprintf('x%i', i))
## [1] "x1" "x2" "x3" "x4"
# Paste those variables together to make the argument of the pmax in the
# interpolated formula
dummy_vars_string = paste0(dummy_vars, collapse=',')
## [1] "x1,x2,x3,x4"
# Make a named list that maps the dummy variable names (e.g., x1) to the
# real variable names (e.g., Sepal.Length)
dummy_vars_list = lapply(target_columns, as.name) %>% setNames(dummy_vars)
## $x1
## Sepal.Length
##
## $x2
## Sepal.Width
##
## $x3
## Petal.Length
##
## $x4
## Petal.Width
# Make a pmax formula using the dummy variables
max_formula = as.formula(paste0(c('~pmax(', dummy_vars_string, ')'), collapse=''))
## ~pmax(x1, x2, x3, x4)
# Interpolate the formula using the named variables
library(lazyeval)
iris %>%
mutate_(max_attribute=interp(max_formula, .values=dummy_vars_list)) %>%
head(3)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species max_attribute
## 1 5.1 3.5 1.4 0.2 setosa 5.1
## 2 4.9 3.0 1.4 0.2 setosa 4.9
## 3 4.7 3.2 1.3 0.2 setosa 4.7
dplyr 1.0.1
your second example works perfectly. – avidalvi