I am in a lost. I have been trying to implement this code at:http://www.blackpawn.com/texts/pointinpoly/default.html
However, I don't know how is it possible that the cross-product present there between two 2D vectors can result also in a 2D vector. It does not make sense to me. That is also present in some examples of intersection between polygons and lines, in the fine book "Realtime Collision Detection" - where even scalar triples between 2D vectors appear in the codes (see page 189, for instance).
The issue is that, as far as I can think of it, the pseudo cross-product of two 2D vectors can only result in a scalar (v1.xv2.y-v1.yv2.x) or at most in a 3D vector if one adds two zeros, since that scalar represents the Z dimension. But how can it result in a 2D vector?
I am not the first one to ask this and, coincidently, when trying to use the same code example: Cross product of 2 2D vectors However, as can be easily seen, the answer, the original question when updated and the comments in that thread ended up being quite a mess, if I dare say so.
Does anyone know how should I get these 2D vectors from the cross-product of two 2D vectors? If code is to be provided, I can handle C#, JavaScript and some C++.
EDIT - here is a piece of the code in the book as I mentioned above:
int IntersectLineQuad(Point p, Point q, Point a, Point b, Point c, Point d, Point &r)
{
Vector pq = q - p;
Vector pa = a - p;
Vector pb = b - p;
Vector pc = c - p;
// Determine which triangle to test against by testing against diagonal first
Vector m = Cross(pc, pq);
float v = Dot(pa, m); // ScalarTriple(pq, pa, pc);
if (v >= 0.0f) {
// Test intersection against triangle abc
float u = -Dot(pb, m); // ScalarTriple(pq, pc, pb);
if (u < 0.0f) return 0;
float w = ScalarTriple(pq, pb, pa);
....