- first rule of optimization: don't do it
- second rule: don't do it, yet
Here's some timings (Python 2.5.2, Windows):
$ python -mtimeit -s"from math import sqrt; x = 123" "x**.5"
1000000 loops, best of 3: 0.445 usec per loop
$ python -mtimeit -s"from math import sqrt; x = 123" "sqrt(x)"
1000000 loops, best of 3: 0.574 usec per loop
$ python -mtimeit -s"import math; x = 123" "math.sqrt(x)"
1000000 loops, best of 3: 0.727 usec per loop
This test shows that x**.5
is slightly faster than sqrt(x)
.
For the Python 3.0 the result is the opposite:
$ \Python30\python -mtimeit -s"from math import sqrt; x = 123" "x**.5"
1000000 loops, best of 3: 0.803 usec per loop
$ \Python30\python -mtimeit -s"from math import sqrt; x = 123" "sqrt(x)"
1000000 loops, best of 3: 0.695 usec per loop
$ \Python30\python -mtimeit -s"import math; x = 123" "math.sqrt(x)"
1000000 loops, best of 3: 0.761 usec per loop
math.sqrt(x)
is always faster than x**.5
on another machine (Ubuntu, Python 2.6 and 3.1):
$ python -mtimeit -s"from math import sqrt; x = 123" "x**.5"
10000000 loops, best of 3: 0.173 usec per loop
$ python -mtimeit -s"from math import sqrt; x = 123" "sqrt(x)"
10000000 loops, best of 3: 0.115 usec per loop
$ python -mtimeit -s"import math; x = 123" "math.sqrt(x)"
10000000 loops, best of 3: 0.158 usec per loop
$ python3.1 -mtimeit -s"from math import sqrt; x = 123" "x**.5"
10000000 loops, best of 3: 0.194 usec per loop
$ python3.1 -mtimeit -s"from math import sqrt; x = 123" "sqrt(x)"
10000000 loops, best of 3: 0.123 usec per loop
$ python3.1 -mtimeit -s"import math; x = 123" "math.sqrt(x)"
10000000 loops, best of 3: 0.157 usec per loop
math.sqrt
is a more optimized routine (as it is) and expresses the intent more clearly, it should always be preferred overx**.5
. It is not premature optimization to know what you write, and chose the alternative that is faster and provides more code clarity. If so, you need to argue equally well why you would chose the other alternatives. - swalog