8
votes

I wish to generate 10,000 random binary matrices which have the same number of 1s per row and per column as a given binary matrix.

The matrix is ~500 x ~10,000. There are about 2,000,000 1s. There are no zero rows or columns.

My current method converts the binary matrix into a bipartite adjacency matrix, and performs 1,000,000 random edge switches to guarantee randomness. This takes 13,000 seconds for 1 matrix. I'm coding in python, using a modified version of networkx's double_edge_swap function.

Is there a more efficient way to generate such matrices?

2
I was looking for the name of this problem. It is the main problem of discrete tomography "which deals with the reconstruction of a binary image from its horizontal and vertical linesums" and for the case of 2 dimensions (pairwise nonparallel lattice directions), the problem is in P. It would be interesting to know what needs 10,000 randomly chosen possible reconstructions.Dan D.
You should specify if you need a particular distribution, since different methods might give slightly different distributions.Veedrac
It depends if you want to improve only efficient for generate matricies the good solution will be call c( function for generate matrix from python.ElConrado

2 Answers

2
votes

I think you can first build a special case of such a matrix, and then use numpy.shuffle to shuffle it:

row_sum = 2
col_sum = 1
arr     = np.zeros((5, 10))
#generate a special case, with given row_sum and col_sum
for i in range(row_sum):
    arr.ravel()[i::arr.shape[1]+row_sum] = 1
arr

Out[84]: 
array([[ 1.,  1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  1.,  1.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  1.,  1.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  1.,  1.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  1.,  1.]])

np.random.shuffle(arr)
#np.random.shuffle(arr.T) to shuffle the columns
arr
Out[89]: 
array([[ 0.,  0.,  0.,  0.,  1.,  1.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  1.,  1.],
       [ 0.,  0.,  1.,  1.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  1.,  1.,  0.,  0.],
       [ 1.,  1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.]])

arr.sum(1) #row sums
Out[90]: array([ 2.,  2.,  2.,  2.,  2.])

arr.sum(0) #col sums
Out[91]: array([ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.])
0
votes

Tried this, and it works

np.mod(np.random.permutation(N*N).reshape(N,N),2)

Example:

>>> np.mod(np.random.permutation(4*4).reshape(4,4),2)  
array([[0, 0, 0, 1],
      [1, 1, 1, 0],
      [1, 0, 0, 1],
      [0, 1, 1, 0]])
>>> np.mod(np.random.permutation(4*4).reshape(4,4),2)  
array([[0, 0, 0, 1],
      [1, 1, 0, 0],
      [1, 1, 1, 1],
      [0, 0, 1, 0]])