I have a spark job (for 1.4.1) receiving a stream of kafka events. I would like to save them continuously as parquet on tachyon.
val lines = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap).map(_._2)
lines.window(Seconds(1), Seconds(1)).foreachRDD { (rdd, time) =>
if (rdd.count() > 0) {
val mil = time.floor(Duration(86400000)).milliseconds
hiveContext.read.json(rdd).toDF().write.mode(SaveMode.Append).parquet(s"tachyon://192.168.1.12:19998/persisted5$mil")
hiveContext.sql(s"CREATE TABLE IF NOT EXISTS persisted5$mil USING org.apache.spark.sql.parquet OPTIONS ( path 'tachyon://192.168.1.12:19998/persisted5$mil')")
}
}
however I see that as time goes on, on every parquet write, spark goes through each 1 sec parquet parts, which get slower and slower
15/08/22 22:04:05 INFO : open(tachyon://192.168.1.12:19998/persisted51440201600000/part-r-00000-db03b24d-6f98-4b5d-bb40-530f35b82633.gz.parquet, 65536)
15/08/22 22:04:05 INFO : open(tachyon://192.168.1.12:19998/persisted51440201600000/part-r-00000-3a7857e2-0435-4ee0-ab2c-6d40224f8842.gz.parquet, 65536)
15/08/22 22:04:05 INFO : open(tachyon://192.168.1.12:19998/persisted51440201600000/part-r-00000-47ff2ac1-da00-4473-b3f7-52640014bc5b.gz.parquet, 65536)
15/08/22 22:04:05 INFO : open(tachyon://192.168.1.12:19998/persisted51440201600000/part-r-00000-61625436-7353-4b1e-bb8d-e8afad3a582e.gz.parquet, 65536)
15/08/22 22:04:05 INFO : open(tachyon://192.168.1.12:19998/persisted51440201600000/part-r-00000-e711aa9a-9bf5-41d5-8523-f5edafa69626.gz.parquet, 65536)
15/08/22 22:04:05 INFO : open(tachyon://192.168.1.12:19998/persisted51440201600000/part-r-00000-4e0cca38-cf75-4771-8965-20a30c863100.gz.parquet, 65536)
15/08/22 22:04:05 INFO : open(tachyon://192.168.1.12:19998/persisted51440201600000/part-r-00000-d1510ed4-2c99-43e2-b3d1-38d3d54e626d.gz.parquet, 65536)
15/08/22 22:04:05 INFO : open(tachyon://192.168.1.12:19998/persisted51440201600000/part-r-00000-022d1918-392d-433f-a7f4-074e46b4460f.gz.parquet, 65536)
15/08/22 22:04:05 INFO : open(tachyon://192.168.1.12:19998/persisted51440201600000/part-r-00000-cf71f5d2-ba0e-4729-9aa1-41dad5d1d08f.gz.parquet, 65536)
15/08/22 22:04:05 INFO : open(tachyon://192.168.1.12:19998/persisted51440201600000/part-r-00000-ce990b1e-82cc-4feb-a162-ac3ddc275609.gz.parquet, 65536)
I came to the conclusion that this is due to the update of summary data, I believe spark do not make use of them. so I would like to disable it
parquet sources shows that I should be able to set "parquet.enable.summary-metadata" to false.
now, I have tried setting it like this, right after creating hiveContext
hiveContext.sparkContext.hadoopConfiguration.setBoolean("parquet.enable.summary-metadata", false)
hiveContext.sparkContext.hadoopConfiguration.setInt("parquet.metadata.read.parallelism", 10)
but without success, I also still get logs showing a parallelism of 5 (default).
What is the correct way to disable summary data in spark with parquet?