There seem to be many ways to define singletons in Python. Is there a consensus opinion on Stack Overflow?
21 Answers
I don't really see the need, as a module with functions (and not a class) would serve well as a singleton. All its variables would be bound to the module, which could not be instantiated repeatedly anyway.
If you do wish to use a class, there is no way of creating private classes or private constructors in Python, so you can't protect against multiple instantiations, other than just via convention in use of your API. I would still just put methods in a module, and consider the module as the singleton.
Here's my own implementation of singletons. All you have to do is decorate the class; to get the singleton, you then have to use the Instance
method. Here's an example:
@Singleton
class Foo:
def __init__(self):
print 'Foo created'
f = Foo() # Error, this isn't how you get the instance of a singleton
f = Foo.instance() # Good. Being explicit is in line with the Python Zen
g = Foo.instance() # Returns already created instance
print f is g # True
And here's the code:
class Singleton:
"""
A non-thread-safe helper class to ease implementing singletons.
This should be used as a decorator -- not a metaclass -- to the
class that should be a singleton.
The decorated class can define one `__init__` function that
takes only the `self` argument. Also, the decorated class cannot be
inherited from. Other than that, there are no restrictions that apply
to the decorated class.
To get the singleton instance, use the `instance` method. Trying
to use `__call__` will result in a `TypeError` being raised.
"""
def __init__(self, decorated):
self._decorated = decorated
def instance(self):
"""
Returns the singleton instance. Upon its first call, it creates a
new instance of the decorated class and calls its `__init__` method.
On all subsequent calls, the already created instance is returned.
"""
try:
return self._instance
except AttributeError:
self._instance = self._decorated()
return self._instance
def __call__(self):
raise TypeError('Singletons must be accessed through `instance()`.')
def __instancecheck__(self, inst):
return isinstance(inst, self._decorated)
You can override the __new__
method like this:
class Singleton(object):
_instance = None
def __new__(cls, *args, **kwargs):
if not cls._instance:
cls._instance = super(Singleton, cls).__new__(
cls, *args, **kwargs)
return cls._instance
if __name__ == '__main__':
s1 = Singleton()
s2 = Singleton()
if (id(s1) == id(s2)):
print "Same"
else:
print "Different"
A slightly different approach to implement the singleton in Python is the borg pattern by Alex Martelli (Google employee and Python genius).
class Borg:
__shared_state = {}
def __init__(self):
self.__dict__ = self.__shared_state
So instead of forcing all instances to have the same identity, they share state.
The module approach works well. If I absolutely need a singleton I prefer the Metaclass approach.
class Singleton(type):
def __init__(cls, name, bases, dict):
super(Singleton, cls).__init__(name, bases, dict)
cls.instance = None
def __call__(cls,*args,**kw):
if cls.instance is None:
cls.instance = super(Singleton, cls).__call__(*args, **kw)
return cls.instance
class MyClass(object):
__metaclass__ = Singleton
See this implementation from PEP318, implementing the singleton pattern with a decorator:
def singleton(cls):
instances = {}
def getinstance():
if cls not in instances:
instances[cls] = cls()
return instances[cls]
return getinstance
@singleton
class MyClass:
...
The Python documentation does cover this:
class Singleton(object):
def __new__(cls, *args, **kwds):
it = cls.__dict__.get("__it__")
if it is not None:
return it
cls.__it__ = it = object.__new__(cls)
it.init(*args, **kwds)
return it
def init(self, *args, **kwds):
pass
I would probably rewrite it to look more like this:
class Singleton(object):
"""Use to create a singleton"""
def __new__(cls, *args, **kwds):
"""
>>> s = Singleton()
>>> p = Singleton()
>>> id(s) == id(p)
True
"""
self = "__self__"
if not hasattr(cls, self):
instance = object.__new__(cls)
instance.init(*args, **kwds)
setattr(cls, self, instance)
return getattr(cls, self)
def init(self, *args, **kwds):
pass
It should be relatively clean to extend this:
class Bus(Singleton):
def init(self, label=None, *args, **kwds):
self.label = label
self.channels = [Channel("system"), Channel("app")]
...
As the accepted answer says, the most idiomatic way is to just use a module.
With that in mind, here's a proof of concept:
def singleton(cls):
obj = cls()
# Always return the same object
cls.__new__ = staticmethod(lambda cls: obj)
# Disable __init__
try:
del cls.__init__
except AttributeError:
pass
return cls
See the Python data model for more details on __new__
.
Example:
@singleton
class Duck(object):
pass
if Duck() is Duck():
print "It works!"
else:
print "It doesn't work!"
Notes:
You have to use new-style classes (derive from
object
) for this.The singleton is initialized when it is defined, rather than the first time it's used.
This is just a toy example. I've never actually used this in production code, and don't plan to.
I'm very unsure about this, but my project uses 'convention singletons' (not enforced singletons), that is, if I have a class called DataController
, I define this in the same module:
_data_controller = None
def GetDataController():
global _data_controller
if _data_controller is None:
_data_controller = DataController()
return _data_controller
It is not elegant, since it's a full six lines. But all my singletons use this pattern, and it's at least very explicit (which is pythonic).
Creating a singleton decorator (aka an annotation) is an elegant way if you want to decorate (annotate) classes going forward. Then you just put @singleton before your class definition.
def singleton(cls):
instances = {}
def getinstance():
if cls not in instances:
instances[cls] = cls()
return instances[cls]
return getinstance
@singleton
class MyClass:
...
I think that forcing a class or an instance to be a singleton is overkill. Personally, I like to define a normal instantiable class, a semi-private reference, and a simple factory function.
class NothingSpecial:
pass
_the_one_and_only = None
def TheOneAndOnly():
global _the_one_and_only
if not _the_one_and_only:
_the_one_and_only = NothingSpecial()
return _the_one_and_only
Or if there is no issue with instantiating when the module is first imported:
class NothingSpecial:
pass
THE_ONE_AND_ONLY = NothingSpecial()
That way you can write tests against fresh instances without side effects, and there is no need for sprinkling the module with global statements, and if needed you can derive variants in the future.
The Singleton Pattern implemented with Python courtesy of ActiveState.
It looks like the trick is to put the class that's supposed to only have one instance inside of another class.
class Singleton(object[,...]):
staticVar1 = None
staticVar2 = None
def __init__(self):
if self.__class__.staticVar1==None :
# create class instance variable for instantiation of class
# assign class instance variable values to class static variables
else:
# assign class static variable values to class instance variables
OK, singleton could be good or evil, I know. This is my implementation, and I simply extend a classic approach to introduce a cache inside and produce many instances of a different type or, many instances of same type, but with different arguments.
I called it Singleton_group, because it groups similar instances together and prevent that an object of the same class, with same arguments, could be created:
# Peppelinux's cached singleton
class Singleton_group(object):
__instances_args_dict = {}
def __new__(cls, *args, **kwargs):
if not cls.__instances_args_dict.get((cls.__name__, args, str(kwargs))):
cls.__instances_args_dict[(cls.__name__, args, str(kwargs))] = super(Singleton_group, cls).__new__(cls, *args, **kwargs)
return cls.__instances_args_dict.get((cls.__name__, args, str(kwargs)))
# It's a dummy real world use example:
class test(Singleton_group):
def __init__(self, salute):
self.salute = salute
a = test('bye')
b = test('hi')
c = test('bye')
d = test('hi')
e = test('goodbye')
f = test('goodbye')
id(a)
3070148780L
id(b)
3070148908L
id(c)
3070148780L
b == d
True
b._Singleton_group__instances_args_dict
{('test', ('bye',), '{}'): <__main__.test object at 0xb6fec0ac>,
('test', ('goodbye',), '{}'): <__main__.test object at 0xb6fec32c>,
('test', ('hi',), '{}'): <__main__.test object at 0xb6fec12c>}
Every object carries the singleton cache... This could be evil, but it works great for some :)
Being relatively new to Python I'm not sure what the most common idiom is, but the simplest thing I can think of is just using a module instead of a class. What would have been instance methods on your class become just functions in the module and any data just becomes variables in the module instead of members of the class. I suspect this is the pythonic approach to solving the type of problem that people use singletons for.
If you really want a singleton class, there's a reasonable implementation described on the first hit on Google for "Python singleton", specifically:
class Singleton:
__single = None
def __init__( self ):
if Singleton.__single:
raise Singleton.__single
Singleton.__single = self
That seems to do the trick.
Singleton's half brother
I completely agree with staale and I leave here a sample of creating a singleton half brother:
class void:pass
a = void();
a.__class__ = Singleton
a
will report now as being of the same class as singleton even if it does not look like it. So singletons using complicated classes end up depending on we don't mess much with them.
Being so, we can have the same effect and use simpler things like a variable or a module. Still, if we want use classes for clarity and because in Python a class is an object, so we already have the object (not and instance, but it will do just like).
class Singleton:
def __new__(cls): raise AssertionError # Singletons can't have instances
There we have a nice assertion error if we try to create an instance, and we can store on derivations static members and make changes to them at runtime (I love Python). This object is as good as other about half brothers (you still can create them if you wish), however it will tend to run faster due to simplicity.
class Singeltone(type):
instances = dict()
def __call__(cls, *args, **kwargs):
if cls.__name__ not in Singeltone.instances:
Singeltone.instances[cls.__name__] = type.__call__(cls, *args, **kwargs)
return Singeltone.instances[cls.__name__]
class Test(object):
__metaclass__ = Singeltone
inst0 = Test()
inst1 = Test()
print(id(inst1) == id(inst0))
In cases where you don't want the metaclass-based solution above, and you don't like the simple function decorator-based approach (e.g. because in that case static methods on the singleton class won't work), this compromise works:
class singleton(object):
"""Singleton decorator."""
def __init__(self, cls):
self.__dict__['cls'] = cls
instances = {}
def __call__(self):
if self.cls not in self.instances:
self.instances[self.cls] = self.cls()
return self.instances[self.cls]
def __getattr__(self, attr):
return getattr(self.__dict__['cls'], attr)
def __setattr__(self, attr, value):
return setattr(self.__dict__['cls'], attr, value)