I am just learning Rust. I am trying to create a builder struct for my Game struct. Here is the code:
struct Input {
keys_pressed: HashMap<VirtualKeyCode, bool>,
}
pub struct GameBuilder {
settings: GameSettings,
input: Input,
}
impl GameBuilder {
pub fn new() -> GameBuilder {
GameBuilder {
settings: GameSettings {
window_dimensions: (800, 600),
title: "".to_string(),
},
input: Input {
keys_pressed: HashMap::new(),
}
}
}
pub fn with_dimensions(&mut self, width: u32, height: u32) -> &mut GameBuilder {
self.settings.window_dimensions = (width, height);
self
}
pub fn with_title(&mut self, title: &str) -> &mut GameBuilder {
self.settings.title = title.to_string();
self
}
pub fn game_keys(&mut self, keys: Vec<VirtualKeyCode>) -> &mut GameBuilder {
for key in keys {
self.input.keys_pressed.insert(key, false);
}
self
}
pub fn build(&self) -> Game {
let (width, height) = self.settings.window_dimensions;
Game {
display: glutin::WindowBuilder::new()
.with_dimensions(width, height)
.with_title(self.settings.title.to_string())
.build_glium()
.ok()
.expect("Error in WindowBuilder"),
state: GameState::Running,
input: self.input,
}
}
}
But this code complains in the last line input: self.input
with this:
error: cannot move out of borrowed content
I think I understand why. Since the argument passed in the function is &self
, I cannot take ownership of it, and that what the last line is doing.
I thought that maybe changing &self
to self
would work, but then the compile argues that I cannot mutate self
.
There is also the Copy trait from what I know, and that maybe should solve the problem. But Input is basically a HashMap, which means that a copy could be expensive if the hash itself is too big.
How would be a nice way of solving this problem?
Edit:
I tried doing this:
#[derive(Debug, Copy, Clone)]
struct Input {
keys_pressed: HashMap<VirtualKeyCode, bool>,
}
But the compiler complains:
error: the trait `Copy` may not be implemented for this type; field `keys_pressed` does not implement `Copy`
Copy
trait can only be used for types that are trivially copyable, this requires not having any internal heap allocated memory. – Matthieu M.Copy
– lhahn